Molecular iodine induced/1,3-dipolar cycloaddition/oxidative aromatization sequence: an efficient strategy to construct 2-substituted benzo[f]isoindole-1,3-dicarboxylates

Huan-Ming Huang, Jian-Rong Gao, Qing Ye, Wu-Bin Yu, Wei-Jian Sheng and Yu-Jin Li*
Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, P. R. China. E-mail: lyjzjut@zjut.edu.cn; Fax: +86-0571-88320544; Tel: +86-0571-88320891

Received 24th February 2014 , Accepted 20th March 2014

First published on 20th March 2014


Abstract

A useful method for a molecular iodine induced 1,3-dipolar cycloaddition/oxidative aromatization sequence to construct 2-substituted-benzo[f]isoindole-1,3-dicarboxylates is reported. This is the first report of a molecular iodine induced 1,3-dipolar cycloaddition between quinone structures and diethyl N-substituted iminodiacetates.


Introduction

Iminium ions are important reactive species in organic synthesis for the construction of carbon–carbon and carbon–heteroatom bonds.1 Exploitation of these reactive intermediates by reacting with diverse nucleophiles to construct biologically relevant structural fragments has attracted great interest.2 In the past few decades, the effective using of iminium ions as key intermediates has played an important role in organic reactions, such as the Aza-Henry reactions,3 Mannich reactions,4 Diels–Alder reactions,5 cross dehydrogenative coupling (CDC) reactions,6 Friedel–Crafts reactions,7 N-acyl iminium ion cyclizations,1b,8 Ugi-type processes,8e,9 Baylis–Hillman-type reactions,10 Pictet–Spengler reactions,11 1,3-dipolar cycloadditions,12 intramolecular cyclizations.13 Since iodine is an inexpensive and environmentally benign reagent,14 molecular iodine-mediated reaction for synthesis of heterocycles has been widely reported.15 Moreover, molecular iodine catalyzed CDC reactions to produce iminium ions for the synthesizing a variety of functionalized tetrahydroisoquinolines have been illustrated by Itoh6f and Prabhu.6j

The benzo[f]isoindole framework is the core structure in a large number of natural products exhibiting important biological activities. For example, bhimamycin C and D,16 which display bioactivities against human ovarian cancer cell lines, are EP4 receptor agonists in the treatment of pain, and inhibitors of HIV-1 integrase (Fig. 1). Furthermore, benzo[f]isoindole framework frequently appears in a number of other anticancer compounds.16b


image file: c4ra01593b-f1.tif
Fig. 1 Representative examples of natural products.

Recently, Gong and co-workers17 had reported the chiral azomethine ylide dipoles reacted with quinone derivatives, and after a subsequent base promoted isomerization to generate chiral isoindolines. From our ongoing study of quinones,2c,18 we herein reported a mechanism distinct method for the construction of 2-substituted benzo[f]isoindole-1,3-dicarboxylates 3 induced by molecular iodine.

Results and discussion

Our initial investigations were focused on examining the feasibility of the reaction of diethyl N-methyliminodiacetate 1a with 1,4-naphthoquinone 2a and optimizing the reaction conditions for application to construct a variety of 2-substituted benzo[f]isoindole-1,3-dicarboxylates.

To our delight, the proposed reaction between 1a and 2a did indeed occur in the presence of iodine (3 equiv.) in CH3CN with NaHCO3 as a base to afford 3aa in 60% (Table 1, entry 1). Some other common iodine-addition initiation systems were also investigated, including I2/t-BuOCl and I2/AgOAc, but these systems did not provide any improvement over molecular iodine only (Table 1, entries 2 and 3). Excitingly, the yield of 3aa was up to 75% when DBU was used instead of NaHCO3 (Table 1, entry 4). Solvent screening studies revealed that xylene was the most suitable solvent as other solvents furnished lower yield of 3aa (Table 1, entries 4–8). When the temperature was dropped to 120 °C in xylene, the yield of 3aa was decreased to 80% (Table 1, entry 9). As the iodine dropped to 2 equiv., the yield of 3aa was decreased to 70% (Table 1, entry 10). The result showed that 3 equivalents of iodine was necessary in the reaction system. Finally, the best result was obtained in the presence of iodine (3 equiv.) in xylene with DBU as a base (Table 1, entry 8) and the isolated yield of 3aa was 86%. Besides, the yield of 3aa was decreased to 60% under nitrogen condition (Table 1, entry 11). Comparing to above result (Table 1, entry 8), which indicated oxygen played a role in the final aromatisation process. The structure of product 3ab was unambiguously established by X-ray crystallographic analysis.19

Table 1 Optimization of the reaction conditionsa

image file: c4ra01593b-u1.tif

Entry Base Iodine (equiv.) Solvent T (°C) Yield of 3aab (%)
a Reaction conditions: the mixture of 1a (3.0 mmol), 2a (1.0 mmol), base (3.0 mmol), iodine (3.0 mmol) in solvent (5.0 mL) was stirred for 5 h at reflux temperature under air condition.b Isolated yield.c 3 equiv. t-BuOCl was added.d 3 equiv. AgOAc was added.e Under nitrogen condition.
1 NaHCO3 I2 (3) CH3CN 80 60
2c NaHCO3 I2 (3) CH3CN 80 40
3d NaHCO3 I2 (3) CH3CN 80 20
4 DBU I2 (3) CH3CN 80 75
5 DBU I2 (3) CH2Cl2 40 40
6 DBU I2 (3) CHCl3 60 49
7 DBU I2 (3) Toluene 110 70
8 DBU I2 (3) Xylene 140 86
9 DBU I2 (3) Xylene 120 80
10 DBU I2 (2) Xylene 140 70
11e DBU I2 (3) Xylene 140 60


With the optimal reaction conditions established in hand, we then examined the substrate scope of this useful reaction. As highlighted in Table 2, a variety of ethyl N-substituted iminodiacetate 2 could react efficiently with 1a to give the corresponding products in moderate to good yields upon isolation (Table 2, entries 1–4). As the substituted group on N-atom increased, the yield of 3 was reduced. It was also found that the reaction proceeded smoothly with different quinone structures (Table 2, entries 5–12). However, the yield of corresponding products 3ad–dd were lower when 5-hydroxy-1,4-naphthoquinone 2d was employed because of some insoluble things and can not be identified by NMR or GC-MS (Table 2, entries 13–16 (Fig. 2)).

Table 2 Variation of the substrates

image file: c4ra01593b-u2.tif

Entry 1 R1 2 3 Yield of 3a (%)
a Isolated yield.
1 1a Me image file: c4ra01593b-u3.tif 3aa 86
2 1b Et 3ba 70
3 1c n-Pr 3ca 64
4 1d n-Bu 3da 40
5 1a Me image file: c4ra01593b-u4.tif 3ab 81
6 1b Et 3bb 73
7 1c n-Pr 3cb 61
8 1d n-Bu 3db 57
9 1a Me image file: c4ra01593b-u5.tif 3ac 70
10 1b Et 3bc 63
11 1c n-Pr 3cc 60
12 1d n-Bu 3dc 52
13 1a Me image file: c4ra01593b-u6.tif 3ad 40
14 1b Et 3bd 34
15 1c n-Pr 3cd 23
16 1d n-Bu 3dd 16



image file: c4ra01593b-f2.tif
Fig. 2 X-ray structure of 3ab.

As various ethyl N-alkyl iminodiacetates 1 proceed with 2a–c in moderate to good yields, ethyl N-benzyl iminodiacetate 1e and ethyl N-isopropyl iminodiacetate 1f were chose to expand the applicability of this reaction under the optimal reaction conditions. However, only trace desired product 3e and 3f were observed by GC-MS (Scheme 1). The reason may lie in that the steric hindrance of phenyl group or isopropyl group made it difficult to form the corresponding product.


image file: c4ra01593b-s1.tif
Scheme 1 Reaction of 2a with ethyl N-benzyl iminodiacetate 1e and ethyl N-isopropyl iminodiacetate 1f.

When 2,2′-azanediyldiacetate 1g was employed to react with 2a, a different product 3g was obtained in 50% (Scheme 2).


image file: c4ra01593b-s2.tif
Scheme 2 Reaction of 2a with diethyl 2,2′-azanediyldiacetate 1g.

A mechanism for the resulting product 3 was depicted in Scheme 3. Referred to the literature, the iminium ion II could be generated by the reaction of tertiaryamine I in the presence of molecular iodine.6f,6j Subsequently, 1,3-dipole azomethine III was afforded through a deprotonation process of the iminium intermediate II and reacted with 1,4-naphthoquinone 2a to furnish the [3 + 2] cycloaddition product. Finally, the corresponding product 3a was afforded by the co-oxidation of O2 and I2.14b,20 The GC-MS analysis of the reaction mixture of 1a with a stoichiometric amount of I2 had shown the formation of the 1,3-dipole azomethine III (molecular ion peak in 202.3 [M + 1]+, see ESI).


image file: c4ra01593b-s3.tif
Scheme 3 The possible mechanism for the cycloaddition/aromatization reaction induced by I2.

Conclusions

In conclusion, we have developed a molecular iodine induced 1,3-dipolar cycloaddition/oxidative aromatization sequence to construct 2-substituted benzo[f]isoindole-1,3-dicarboxylates. This useful protocol provides a rapid and efficient strategy to construct biologically important compounds containing quinone structure. Moreover, we have developed a novel 1,3-dipolar cycloaddition reaction through using the intermedium of iminium ion induced by molecular iodine.

Experimental

General

All chemicals were purchased from commercial vendors and were used as received without further purification; any exceptions are noted within the text and the vendors are noted within the context of use. The 1H and 13C NMR spectra were recorded at 500 and 125 MHz, respectively, in CDCl3 using TMS as internal standard with a Bruker AM 500 spectrometer. Chemical shifts (δ) were reported as parts per million (ppm) and the following abbreviations were used to identify the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad and all combinations thereof can be explained by their integral parts. The GC-MS was taken on Agilent (GC431-MS210) and elementary analysis was on Thermo Electron Corporation Flash EA 1112, HRMS were recorded on a Bruker MicroTOF-QII mass instrument (ESI).

General procedure for the preparation of 3

The mixture of diethyl N-substituented iminodiacetate (1a, 3.0 mmol, 3.0 equiv.), quinone (2, 1.0 mmol, 1.0 equiv.), DBU (3.0 mmol, 0.456 g, 3.0 equiv.), iodine (3.0 mmol, 0.762 g, 3.0 equiv.) and xylene (5.0 mL), was stirred for 5 h under refluxing temperature, determined by GC-MS and TLC. The reaction mixture was poured into 8 mL saturated aqueous sodium thiosulfate and was extracted (3 × 10 mL) with CH2Cl2. The combined extracts were dried over MgSO4. The solvent was removed under vacuum, and the resulting crude product was purified by chromatography on silica gel eluted with CH2Cl2 to obtain 3 as yellow solid.

Diethyl 2-methyl-2H-benzo[f]isoindole-4,9-dione-1,3-dicarboxylate (3aa)


image file: c4ra01593b-u7.tif
Yield 86%; mp 122–123 °C. IR (KBr): 2985, 1720, 1706, 1667, 1594, 1548, 1517, 1474, 1466, 1147, 1025, 1008, 800, 744, 703 cm−1. 1H NMR (500 MHz, CDCl3): δ (ppm) 8.22 (dd, J1 = 3.0 Hz, J2 = 7.5 Hz, 2H), 7.73 (dd, J1= 3.5 Hz, J2 = 7.5 Hz, 2H), 4.55 (q, J = 7.5 Hz, 4H), 3.93 (s, 3H), 1.50 (t, J = −7.5 Hz, 6H). 13C NMR (125 MHz, CDCl3): δ (ppm) 178.69 (2C), 160.84 (2C), 134.83 (2C), 133.44 (2C), 128.17 (2C), 127.05 (2C), 121.81 (2C), 62.70 (2C), 34.70, 14.01 (2C). GC-MS m/z 355.1 [M]+, 356.0, 310.3, 296.6, 237.5, 210.5, 206.6. HRMS (ESI-TOF) m/z calcd for C19H18NO6 [M + H]+ 356.1129, found 356.1131.

Diethyl 2-ethyl-2H-benzo[f]isoindole-4,9-dione-1,3-dicarboxylate (3ba)


image file: c4ra01593b-u8.tif
Yield 70%; mp 109–110 °C. IR (KBr): 2985, 1716, 1678, 1594, 1546, 1505, 1436, 1280, 1145, 1044, 1014, 743, 709 cm−1. 1H NMR (500 MHz, CDCl3): δ (ppm) 8.18 (dd, J1 = 3.5 Hz, J2 = 7.5 Hz, 2H), 7.69 (dd, J1 = 3.5 Hz, J2 = 7.0 Hz, 2H), 4.52 (q, J = 6.5 Hz, 4H), 4.33 (q, J = 7.0 Hz, 2H), 1.48–1.44 (m, 9H). 13C NMR (125 MHz, CDCl3): δ (ppm) 178.75 (2C), 160.98 (2C), 134.88 (2C), 133.33 (2C), 127.52 (2C), 126.93 (2C), 121.74 (2C), 62.49 (2C), 42.99, 16.54, 13.78 (2C). GC-MS m/z 370 [M + H]+, 369.0 [M]+, 342.2, 297.3, 296.2, 268.3, 197.3, 76.1. HRMS (ESI-TOF) m/z calcd for C20H19NO6Na [M + Na]+ 392.1104, found 392.1112.

Diethyl 2-propyl-2H-benzo[f]isoindole-4,9-dione-1,3-dicarboxylate (3ca)


image file: c4ra01593b-u9.tif
Yield 64%; mp 104–105 °C. IR (KBr): 2968, 1728, 1668, 1594, 1512, 1471, 1421, 1317, 1264, 1225, 1143, 1005, 798, 743, 713 cm−1. 1H NMR (500 MHz, CDCl3): δ (ppm) 8.20 (dd, J1 = 4.0 Hz, J2 = 7.0 Hz, 2H), 7.71 (dd, J1 = 3.5 Hz, J2 = 6.0 Hz, 2H), 4.54 (q, J = 7.5 Hz, 4H), 4.28 (t, J = 8.0 Hz, 2H), 1.87–1.81 (m, 2H), 1.48 (t, J = 7.5 Hz, 6H), 0.94 (t, J =7.5 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 178.79 (2C), 161.02 (2C), 134.89 (2C), 133.47 (2C), 127.72 (2C), 127.12 (2C), 121.83 (2C), 62.55 (2C), 48.96, 24.59, 13.81 (2C), 10.84. GC-MS m/z 384.1 [M + H]+, 383.0 [M]+, 325.3, 311.5, 211.3. HRMS (ESI-TOF) m/z calcd for C21H21NO6Na [M + Na]+ 406.1261, found 406.1265.

Diethyl 2-butyl-2H-benzo[f]isoindole-4,9-dione-1,3-dicarboxylate (3da)


image file: c4ra01593b-u10.tif
Yield 40.3%; mp 99–100 °C. IR (KBr): 2927, 1728, 1673, 1467, 1368, 1261, 1227, 1201, 1097, 1017, 800 cm−1. 1H NMR (500 MHz, CDCl3): δ (ppm) 8.21 (dd, J1 = 3.0 Hz, J2 = 6.0 Hz, 2H), 7.72 (dd, J1 = 3.0 Hz, J2 = 5.5 Hz, 2H), 4.54 (q, J = 6.5 Hz, 4H), 4.31 (t, J = 8.0 Hz, 2H), 1.81–1.75 (m, 2H), 1.49 (t, J = 6.5 Hz, 6H), 1.38–1.32 (m, 2H), 0.94 (t, J = 7.0 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 178.86 (2C), 161.11 (2C), 134.89 (2C), 133.41 (2C), 127.72 (2C), 127.09 (2C), 121.74 (2C), 62.68 (2C), 47.56, 33.47, 19.79, 13.99 (2C), 13.54. GC-MS m/z 398.5 [M + 1]+, 397.4 [M]+, 352.5, 325.5, 324.5 (100%), 296.8, 282.7, 254.7, 224.5. HRMS (ESI-TOF) m/z calcd for C22H23NO6Na [M + Na]+ 420.1423, found 420.1427.

Diethyl 2-methyl-2H-naphtho[2,3-f]isoindole-4,11-dione-1,3-dicarboxylate (3ab)


image file: c4ra01593b-u11.tif
Yield 81%; mp 176–177 °C. IR (KBr): 2927, 1720, 1705, 1674, 1621, 1513, 1472, 1293, 1242, 1208, 1186, 1107, 1038, 1022, 762, 747 cm−1. 1H NMR (CDCl3, 500 MHz): 8.73 (s, 2H), 8.04 (dd, J1 = 3.0 Hz, J2 = 6.5 Hz 2H), 7.65 (dd, J1 = 3.5 Hz, J2 = 6.0 Hz, 2H), 4.57 (q, J = 7.0 Hz, 4H), 3.93 (s, 3H), 1.52 (t, J = 7.5 Hz, 6H). 13C NMR (CDCl3, 125 MHz) 178.60 (2C), 160.97 (2C), 134.81 (2C), 131.26 (2C), 129.97 (2C), 129.25 (2C), 129.17 (2C), 128.29 (2C), 122.63 (2C), 62.73 (2C), 34.72 (1C), 14.05 (2C).

GC-MS m/z 405.9 [M + 1]+, 361.2, 333.2, 289.3, 288.4, 262.3, 261.3. Anal. calcd for C18H17NO4S2: C, 68.14; H, 4.72; N, 3.46. Found: C, 68.04; H, 4.88; N, 3.26%.

Diethyl 2-ethyl-2H-naphtho[2,3-f]isoindole-4,11-dione-1,3-dicarboxylate (3bb)


image file: c4ra01593b-u12.tif
Yield 73%; mp 134–135 °C. IR (KBr): 2978, 1725, 1674, 1619, 1437, 1281, 1234, 1185, 1038, 1015, 862, 759 cm−1. 1H NMR (500 MHz, CDCl3): δ (ppm) 8.73 (s, 2H), 8.03 (dd, J1 = 3.5 Hz, J2 = 6.0 Hz, 2H), 7.64 (dd, J1 = 3.5 Hz, J2 = 6.5 Hz, 2H), 4.57 (q, J = 6.5 Hz, 4H), 4.36 (q, J = 7.5 Hz, 2H), 1.53–1.49 (m, 9H). 13C NMR (125 MHz, CDCl3): δ(ppm) 178.72 (2C), 161.16 (2C), 134.81 (2C), 131.34 (2C), 129.96 (2C), 129.19 (2C), 129.13 (2C), 127.53 (2C), 122.64 (2C), 62.55 (2C), 43.12, 16.79, 14.01 (2C). GC-MS m/z 419.9 [M + H]+, 419.0 [M]+, 390.2, 375.1, 346.2, 318.3, 300.2, 274.4. HRMS (ESI-TOF) m/z calcd for C24H22NO6 [M + H]+ 420.1442, found 420.1449.

Diethyl 2-propyl-2H-naphtho[2,3-f]isoindole-4,11-dione-1,3-dicarboxylate (3cb)


image file: c4ra01593b-u13.tif
Yield 61%; mp 110–111 °C. IR (KBr): 2965, 1736, 1670, 1602, 1501, 1440, 1282, 1187, 1041, 1011, 917, 761 cm−1. 1H NMR (500 MHz, CDCl3): δ (ppm) 8.67 (s, 2H), 7.99 (dd, J1 = 3.0 Hz, J2 = 6.5 Hz, 2H), 7.60 (dd, J1 = 3.0 Hz, J2 = 6.5 Hz, 2H), 4.56 (q, J = 7.0 Hz, 4H), 4.28 (q, J = 7.5 Hz, 2H), 1.88–1.81 (m, 2H), 1.50 (q, J = 7.5 Hz, 6H), 0.95 (q, J = 7.5 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ(ppm) 178.58 (2C), 161.13 (2C), 134.71 (2C), 131.23 (2C), 129.91 (2C), 129.21 (2C), 129.14 (4C), 127.81 (2C), 122.49 (2C), 62.71 (2C), 49.20, 24.74, 14.02 (2C), 10.90. GC-MS: m/z 433.8 [M + H]+, 432.9[M]+, 404.2, 388.3, 347.2, 346.3, 300.2, 41.0. HRMS (ESI-TOF) m/z calcd for C25H24NO6 [M + H]+ 434.1598, found 434.1606.

Diethyl 2-butyl-2H-naphtho[2,3-f]isoindole-4,11-dione-1,3-dicarboxylate (3db)


image file: c4ra01593b-u14.tif
Yield 57%; mp 100–101 °C. IR (KBr): 2961, 1735, 1705, 1677, 1619, 1435, 1305, 1273, 1236, 1182, 1033, 1020, 753 cm−1. 1H NMR (500 MHz, CDCl3): δ(ppm) 8.69 (s, 2H), 8.00 (dd, J1 = 3.0 Hz, J2 = 6.0 Hz, 2H), 7.61 (dd, J1 = 3.0 Hz, J2 = 6.5 Hz, 2H), 4.56 (q, J = 7.5 Hz, 4H), 4.30 (q, J = 8.0 Hz, 2H), 1.82–1.76 (m, 2H), 1.51 (q, J = 7.0 Hz, 6H), 1.38–1.31 (m, 2H), 0.94 (q, J = 7.5 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ(ppm) 178.55 (2C), 161.08 (2C), 134.69 (2C), 131.20 (2C), 129.87 (2C), 129.11 (2C), 129.08 (2C), 127.74 (2C), 122.46 (2C), 62.66 (2C), 47.54, 33.42, 19.74, 13.98 (2C), 13.51. GC-MS m/z 448.0 [M + H]+, 446.9 [M]+, 418.0, 402.1, 375.1, 374.3 (100%), 304.3, 41.0. HRMS (ESI-TOF) m/z calcd for C26H26NO6 [M + H]+ 448.1755, found 448.1750.

Diethyl 2-methyl-5-nitro-2H-benzo[f]isoindole-4,9-dione-1,3-dicarboxylate (3ac)


image file: c4ra01593b-u15.tif
Yield 70%; mp 85–86 °C. IR (KBr): 2983, 1723, 1676, 1593, 1544, 1509, 1375, 1306, 1252, 1226, 1144, 1026, 912, 798, 712 cm−1. 1H NMR (500 MHz, CDCl3): δ (ppm) 8.40 (dd, J1 = 1.0 Hz, J2 = 7.5 Hz, 1H), 7.83 (t, J = 7.5 Hz, 1H), 7.70 (dd, J1 = 1.0 Hz, J2 = 8.0 Hz, 1H), 4.54 (q, J = 7.0 Hz, 2H), 4.47 (q, J = 7.0 Hz, 2H), 3.96 (s, 3H), 1.49 (t, J = 7.0 Hz, 3H), 1.43 (t, J = 6.5 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 176.18, 175.21, 160.25, 160.08, 149.43, 135.97, 133.77, 129.58, 128.65, 128.51, 127.35, 126.75, 121.63, 120.67, 62.91, 62.87, 34.95, 13.96, 13.73. GC-MS m/z 400.8 [M]+, 399.8, 384.2, 356.2, 339.3, 309.1, 284.1, 256.1. HRMS (ESI-TOF) m/z calcd for C19H16N2O8Na [M + Na]+ 423.0799, found 423.0807.

Diethyl 2-ethyl-5-nitro-2H-benzo[f]isoindole-4,9-dione-1,3-dicarboxylate (3bc)


image file: c4ra01593b-u16.tif
Yield 63%; mp 75–76 °C. IR (KBr): 2982, 1730, 1681, 1531, 1440, 1309, 1233, 1141, 1018, 798, 711 cm−1. 1H NMR (500 MHz, CDCl3): δ (ppm) 8.39 (dd, J1 = 0.5 Hz, J2 = 7.0 Hz, 1H), 7.82 (t, J = 8.0 Hz, 1H), 7.70 (dd, J1 = 1.5 Hz, J2 = 8.5 Hz, 1H), 4.54 (q, J = 7.5 Hz, 2H), 4.47 (q, J = 7.5 Hz, 2H), 4.40 (q, J = 7.0 Hz, 2H), 3.96 (s, 3H), 1.48 (t, J = 7.0 Hz, 6H), 1.43 (t, J = 7.0 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 176.24, 175.26, 160.38, 160.16, 149.38, 136.00, 133.77, 129.54, 128.04, 127.79, 127.32, 126.79, 121.75, 120.71, 62.90, 62.89, 43.44, 16.75, 13.93, 13.71.

GC-MS m/z 414.8 [M]+, 413.8, 396.0, 386.0, 369.2, 342.3, 325.3, 295.1. HRMS (ESI-TOF) m/z calcd for C20H18N2O8Na [M + Na]+ 437.0955, found 437.0958.

Diethyl 2-propyl-5-nitro-2H-benzo[f]isoindole-4,9-dione-1,3-dicarboxylate (3cc)


image file: c4ra01593b-u17.tif
Yield 60%; mp 70–71 °C. IR (KBr): 2977, 1734, 1682, 1532, 1438, 1367, 1315, 1227, 1142, 1018, 797, 712 cm−1. 1H NMR (500 MHz, CDCl3): δ (ppm) 8.40 (dd, J1 = 1.0 Hz, J2 = 8.0 Hz, 1H), 7.83 (t, J = 8.0 Hz, 1H), 7.70 (dd, J1 = 0.5 Hz, J2 = 7.5 Hz, 1H), 4.54 (q, J = 7.5 Hz, 2H), 4.48 (q, J = 7.0 Hz, 2H), 4.37 (t, J = 7.5 Hz, 2H), 4.31–4.26 (m, 2H), 1.80–1.74 (m, 2H), 1.48 (t, J = 7.5 Hz, 3H), 1.43 (t, J = 7.0 Hz, 3H), 0.94 (t, J = 7.5 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 176.30, 175.34, 160.48, 160.26, 149.47, 136.06, 133.77, 129.58, 128.33, 128.11, 127.34, 126.85, 121.73, 120.70, 62.94, 62.89, 49.34, 24.82, 13.95, 13.74, 10.90. GC-MS m/z 429.1 [M + H]+, 428.1, 400.2, 383.3, 342.3, 341.3, 295.4, 206.4. HRMS (ESI-TOF) m/z calcd for C21H21N2O8 [M + H]+ 429.1293, found 429.1321.

Diethyl 2-butyl-5-nitro-2H-benzo[f]isoindole-4,9-dione-1,3-dicarboxylate (3dc)


image file: c4ra01593b-u18.tif
Yield 52%; mp 65–66 °C. IR (KBr): 2966, 1740, 1620, 1544, 1445, 1373, 1220, 1018, 800, 711 cm−1. 1H NMR (500 MHz, CDCl3): δ(ppm) 8.40 (dd, J1 = 1.0 Hz, J2 = 7.5 Hz, 1H), 7.83 (t, J = 7.5 Hz, 1H), 7.70 (dd, J1 = 1.5 Hz, J2 = 8.0 Hz, 1H), 4.54 (q, J = 7.0 Hz, 2H), 4.48 (q, J = 7.0 Hz, 2H), 4.34 (t, J = 7.5 Hz, 2H), 1.85–1.79 (m, 2H), 1.49 (t, J = 7.5 Hz, 3H), 1.43 (t, J = 7.0 Hz, 3H), 0.94 (t, J = 7.0 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 176.27, 175.28, 160.45, 160.24, 149.46, 136.05, 133.71, 129.53, 128.26, 128.05, 127.30, 126.84, 121.68, 120.65, 62.88, 62.83, 47.69, 33.45, 19.72, 13.93, 13.71, 13.49. GC-MS m/z 443.1 [M + H]+, 412.3, 397.2, 370.2, 369.2 (100%), 297.5, 269.3. HRMS (ESI-TOF) m/z calcd for C22H23N2O8 [M + H]+ 443.1449, found 443.1461.

Diethyl 2-methyl-5-hydroxy-2H-benzo[f]isoindole-4,9-dione-1,3-dicarboxylate (3ad)


image file: c4ra01593b-u19.tif
Yield 40%; mp 133–134 °C. IR (KBr): 2964, 1705, 1669, 1634, 1455, 1262, 1082, 1021, 802, 695 cm−1. 1H NMR (500 MHz, CDCl3): δ (ppm) 12.65 (s, 1H), 7.73 (dd, J1 = 1.0 Hz, J2 = 7.5 Hz, 1H), 7.59 (t, J = 8.0 Hz, 1H), 7.22 (dd, J1 = 1.0 Hz, J2 = 8.5 Hz, 1H), 4.56–4.51 (m, 4H), 3.91 (s, 3H), 1.50–1.47 (m, 4H). 13C NMR (125 MHz, CDCl3): δ(ppm) 184.77, 177.87, 162.73, 160.62, 160.60, 135.99, 135.16, 128.72, 128.22, 123.95, 121.77, 120.90, 119.35, 116.95, 62.84, 62.73, 34.75, 13.99, 13.98. GC-MS m/z 372.2 [M + H]+, 371.3, 326.4, 325.5, 299.5, 253.5, 225.5, 63.1. HRMS (ESI-TOF) m/z calcd for C19H17NO7Na [M + Na]+ 394.0907, found 394.0897.

Diethyl 2-ethyl-5-hydroxy-2H-benzo[f]isoindole-4,9-dione-1,3-dicarboxylate (3bd)


image file: c4ra01593b-u20.tif
Yield 34%; mp 100–101 °C. IR (KBr): 2977, 1735, 1705, 1674, 1633, 1555, 1365, 1350, 1263, 1226, 1075, 801, 715 cm−1. 1H NMR (500 MHz, CDCl3): δ (ppm) 12.67 (s, 1H), 7.73 (dd, J1 =1.5 Hz, J2 = 7.5 Hz, 1H), 7.59 (t, J = 8.5 Hz, 1H), 7.22 (dd, J1 = 1.0 Hz, J2 = 8.5 Hz, 1H), 4.56–4.52 (m, 4H), 4.34 (q, J = 6.5 Hz, 2H), 1.50–1.46 (m, 9H). 13C NMR (125 MHz, CDCl3): δ (ppm) 184.86, 177.98, 162.74, 160.81, 160.75, 135.98, 135.22, 128.05, 127.55, 123.96, 62.87, 62.76, 43.32, 16.73, 13.97 (2C). GC-MS m/z 386.3 [M + H]+, 385.5 (100%), 339.6, 312.5, 266.5, 239.3, 183.2, 155.5. HRMS (ESI-TOF) m/z calcd for C20H20NO7 [M + H]+ 386.1235, found 386.1250.

Diethyl 2-propyl-5-hydroxy-2H-benzo[f]isoindole-4,9-dione-1,3-dicarboxylate (3cd)


image file: c4ra01593b-u21.tif
Yield 23%; mp 100–101 °C. IR (KBr): 2974, 1732, 1637, 1618, 1557, 1509, 1444, 1356, 1342, 1268, 1218, 1081, 1010, 834, 748 cm−1. 1H NMR (500 MHz, CDCl3): δ (ppm) 12.67 (s, 1H), 7.73 (dd, J1 = 1.5 Hz, J2 = 7.5 Hz, 1H), 7.59 (t, J = 8.5 Hz, 1H), 7.22 (dd, J1 = 1.0 Hz, J2 = 8.5 Hz, 1H), 4.56–4.51 (m, 4H), 4.26 (q, J = 8.5 Hz, 2H), 1.92–1.80 (m, 2H), 1.48 (t, J = 7.0 Hz, 3H), 0.95 (t, J = 7.5 Hz, 3H), 0.94 (t, J = 7.5Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 184.89, 178.05, 162.75, 160.86, 160.82, 136.00, 135.23, 128.32, 127.82, 123.97, 121.72, 120.81, 119.36, 116.99, 62.87, 62.78, 49.34, 24.76, 13.98, 13.96, 10.93. GC-MS m/z 400.1 [M + H]+, 399.3, 370.3, 353.5, 312.3, 266.2, 254.3, 41.1. HRMS (ESI-TOF) m/z calcd for C21H21NO7Na [M + Na]+ 422.1210, found 422.1218.

Diethyl 2-butyl-5-hydroxy-2H-benzo[f]isoindole-4,9-dione-1,3-dicarboxylate (3dd)


image file: c4ra01593b-u22.tif
Yield 16%; mp 85–86 °C. IR (KBr): 2964, 1712, 1671, 1632, 1560, 1511, 1439, 1367, 1349, 1262, 1204, 1079, 1019, 801 cm−1. 1H NMR (500 MHz, CDCl3): δ (ppm) 12.67 (s, 1H), 7.73 (dd, J1 = 1.0 Hz, J2 = 7.5 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.22 (dd, J1 = 1.5 Hz, J2 = 8.0 Hz, 1H), 4.56–4.51 (m, 4H), 4.29 (t, J = 7.5 Hz, 2H), 1.81–1.75 (m, 2H), 1.48 (t, J = 7.0 Hz, 6H), 1.40–1.32 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm) 183.85, 177.00, 161.72, 159.83, 159.78, 134.95, 134.21, 127.25, 126.77, 122.94, 120.67, 119.78, 118.32, 115.97, 61.82, 61.73, 46.67, 32.40, 18.75, 12.95 (2C), 12.51. GC-MS m/z 414.1 [M + H]+, 413.2, 384.2, 368.2, 340.2, 312.2, 298.2, 270.2. HRMS (ESI-TOF) m/z calcd for C22H23NO7Na [M + Na]+ 436.1367, found 436.1376.

Diethyl 2-(2-ethoxy-2-oxoethyl)-2H-benzo[f]isoindole-4,9-dione-1,3-dicarboxylate (3g)


image file: c4ra01593b-u23.tif
Yield 50%; mp 137–138 °C. 1H NMR (500 MHz, CDCl3): δ (ppm) 8.23 (dd, J1 = 3.0 Hz, J2 = 5.5 Hz, 2H), 7.74 (dd, J1 = 3.5 Hz, J2 = 6.5 Hz, 2H), 5.23 (s, 2H), 4.51 (q, J = 7.0 Hz, 4H), 4.27 (q, J = 7.5 Hz, 2H), 1.48 (t, J = 7.0 Hz, 6H), 1.30 (t, J = 7.5 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ (ppm); 178.47 (2C), 166.69, 160.59 (2C), 134.80 (2C), 133.47 (2C), 127.83 (2C), 127.03 (2C), 122.60 (2C), 62.70 (2C), 62.26, 48.52, 14.03, 13.88 (2C). HRMS (ESI-TOF) m/z calcd for C22H21NO8Na [M + Na]+ 450.1165, found 450.1167.

Acknowledgements

We gratefully acknowledge the financial supported by the Natural Science Foundation of China (21176223) and the National Natural Science Foundation of Zhejiang (LY13B020016) and the Key Innovation Team of Science and Technology in Zhejiang Province(2010R50018).

Notes and references

  1. (a) A. G. Doyle and E. N. Jacobsen, Chem. Rev., 2007, 107, 5713 CrossRef CAS PubMed; (b) B. E. Maryanoff, H.-C. Zhang, J. H. Cohen, I. J. Turchi and C. A. Maryanoff, Chem. Rev., 2004, 104, 1431 CrossRef CAS PubMed; (c) W. N. Speckamp and M. J. Moolenaar, Tetrahedron, 2000, 56, 3817 CrossRef CAS; (d) J. Vicente, M. T. Chicote, A. J. Martinez-Martinez, D. Bautista and P. G. Jones, Org. Biomol. Chem., 2011, 9, 2279 RSC; (e) D. Bandyopadhyay, E. Rhodes and B. K. Banik, RSC Adv., 2013, 3, 16756 RSC; (f) P. Gunasekaran, S. Indumathi and S. Perumal, RSC Adv., 2013, 3, 8318 RSC; (g) J. Xuan, Z.-J. Feng, S.-W. Duan and W.-J. Xiao, RSC Adv., 2012, 2, 4065 RSC.
  2. (a) A. K. Yadav, V. P. Srivastava and L. D. S. Yadav, RSC Adv., 2014, 4, 4181 RSC; (b) K. V. Turcheniuk, V. P. Kukhar, G.-V. Roschenthaler, J. L. Acena, V. A. Soloshonok and A. E. Sorochinsky, RSC Adv., 2013, 3, 6693 RSC; (c) Y.-J. Li, H.-M. Huang, J. Ju, J.-H. Jia, L. Han, Q. Ye, W.-B. Yu and J.-R. Gao, RSC Adv., 2013, 3, 25840 RSC; (d) H. Mayr, A. R. Ofial, J. Sauer and B. Schmied, Eur. J. Org. Chem., 2000, 2013 CrossRef CAS; (e) P. Langer, Eur. J. Org. Chem., 2007, 2233 CAS; (f) U. Martínez-Estibalez, A. Gómez-SanJuan, O. García-Calvo, E. Aranzamendi, E. Lete and N. Sotomayor, Eur. J. Org. Chem., 2011, 3610 CrossRef; (g) M. A. Petersen, I. B. Nielsen, M. B. Kristensen, A. Kadziola, L. Lammich, L. H. Andersen and M. B. Nielsen, Org. Biomol. Chem., 2006, 4, 1546 RSC.
  3. (a) A. G. Condie, J. C. González-Gómez and C. R. J. Stephenson, J. Am. Chem. Soc., 2010, 132, 1464 CrossRef CAS PubMed; (b) D. B. Freeman, L. Furst, A. G. Condie and C. R. J. Stephenson, Org. Lett., 2011, 14, 94 CrossRef PubMed; (c) E. Boess, D. Sureshkumar, A. Sud, C. Wirtz, C. Farès and M. Klussmann, J. Am. Chem. Soc., 2011, 133, 8106 CrossRef CAS PubMed; (d) S. Cai, X. Zhao, X. Wang, Q. Liu, Z. Li and D. Z. Wang, Angew. Chem., Int. Ed., 2012, 51, 8050 CrossRef CAS PubMed; (e) E. Alza, S. Sayalero, P. Kasaplar, D. Almaşi and M. A. Pericàs, Chem.–Eur. J., 2011, 17, 11585 CrossRef CAS PubMed; (f) R. G. Soengas, S. Silva, A. M. Estévez, J. C. Estévez, R. J. Estévez and H. Rodríguez-Solla, Eur. J. Org. Chem., 2012, 4339 CrossRef CAS; (g) M. Ahamed, T. Thirukkumaran, W. Y. Leung, P. Jensen, J. Schroers and M. H. Todd, Eur. J. Org. Chem., 2010, 5980 CrossRef CAS.
  4. (a) S. K. Bur and S. F. Martin, Tetrahedron, 2001, 57, 3221 CrossRef CAS; (b) S. F. Martin, K. J. Barr, D. W. Smith and S. K. Bur, J. Am. Chem. Soc., 1999, 121, 6990 CrossRef CAS; (c) C. Dubs, Y. Hamashima, N. Sasamoto, T. M. Seidel, S. Suzuki, D. Hashizume and M. Sodeoka, J. Org. Chem., 2008, 73, 5859 CrossRef CAS PubMed; (d) R. Larouche-Gauthier and G. Bélanger, Org. Lett., 2008, 10, 4501 CrossRef CAS PubMed; (e) S. Liras, C. L. Lynch, A. M. Fryer, B. T. Vu and S. F. Martin, J. Am. Chem. Soc., 2001, 123, 5918 CrossRef CAS PubMed; (f) T. Fujita, H. Nagasawa, Y. Uto, T. Hashimoto, Y. Asakawa and H. Hori, Org. Lett., 2004, 6, 827 CrossRef CAS PubMed; (g) D. M. Tomazela, L. A. B. Moraes, R. A. Pilli, M. N. Eberlin and M. G. M. D'Oca, J. Org. Chem., 2002, 67, 4652 CrossRef CAS PubMed.
  5. (a) S. D. Larsen and P. A. Grieco, J. Am. Chem. Soc., 1985, 107, 1768 CrossRef CAS; (b) P. A. Grieco, S. D. Larsen and W. F. Fobare, Tetrahedron Lett., 1986, 27, 1975 CrossRef CAS; (c) D. T. Amos, A. R. Renslo and R. L. Danheiser, J. Am. Chem. Soc., 2003, 125, 4970 CrossRef CAS PubMed; (d) N. Sarkar, A. Banerjee and S. G. Nelson, J. Am. Chem. Soc., 2008, 130, 9222 CrossRef CAS PubMed.
  6. (a) S.-I. Murahashi, T. Nakae, H. Terai and N. Komiya, J. Am. Chem. Soc., 2008, 130, 11005 CrossRef CAS PubMed; (b) S.-I. Murahashi, N. Komiya, H. Terai and T. Nakae, J. Am. Chem. Soc., 2003, 125, 15312 CrossRef CAS PubMed; (c) Z. Li and C.-J. Li, J. Am. Chem. Soc., 2005, 127, 3672 CrossRef CAS PubMed; (d) D. P. Hari and B. König, Org. Lett., 2011, 13, 3852 CrossRef CAS PubMed; (e) M.-Z. Wang, C.-Y. Zhou, M.-K. Wong and C.-M. Che, Chem.–Eur. J., 2010, 16, 5723 CrossRef CAS PubMed; (f) T. Nobuta, N. Tada, A. Fujiya, A. Kariya, T. Miura and A. Itoh, Org. Lett., 2013, 15, 574 CrossRef CAS PubMed; (g) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215 CrossRef CAS PubMed; (h) S.-I. Murahashi and D. Zhang, Chem. Soc. Rev., 2008, 37, 1490 RSC; (i) M. Klussmann and D. Sureshkumar, Synthesis, 2011, 3, 353 CrossRef; (j) J. Dhineshkumar, M. Lamani, K. Alagiri and K. R. Prabhu, Org. Lett., 2013, 15, 1092 CrossRef CAS PubMed; (k) P. Liu, Z. Wang, J. Lin and X. Hu, Eur. J. Org. Chem., 2012, 1583 CrossRef CAS; (l) Z. Li and C.-J. Li, Eur. J. Org. Chem., 2005, 3173 CrossRef CAS.
  7. S. Suga, A. Nagaki and J.-i. Yoshida, Chem. Commun., 2003, 354 RSC.
  8. (a) T. Yang, L. Campbell and D. J. Dixon, J. Am. Chem. Soc., 2007, 129, 12070 CrossRef CAS PubMed; (b) A. Padwa, C. O. Kappe and T. S. Reger, J. Org. Chem., 1996, 61, 4888 CrossRef CAS; (c) A. Padwa and A. G. Waterson, Tetrahedron, 2000, 56, 10159 CrossRef CAS; (d) M. J. Fisher and L. E. Overman, J. Org. Chem., 1990, 55, 1447 CrossRef CAS; (e) Y. Tanaka, T. Hasui and M. Suginome, Org. Lett., 2007, 9, 4407 CrossRef CAS PubMed.
  9. J. L. Díaz, M. Miguel and R. Lavilla, J. Org. Chem., 2004, 69, 3550 CrossRef PubMed.
  10. E. L. Myers, J. G. de Vries and V. K. Aggarwal, Angew. Chem., Int. Ed., 2007, 46, 1893 CrossRef CAS PubMed.
  11. (a) B. Kundu, D. Sawant, P. Partani and A. P. Kesarwani, J. Org. Chem., 2005, 70, 4889 CrossRef CAS PubMed; (b) L. Y. P. Luk, S. Bunn, D. K. Liscombe, P. J. Facchini and M. E. Tanner, Biochemistry, 2007, 46, 10153 CrossRef CAS PubMed; (c) C. C. Silveira, L. A. Felix, A. L. Braga and T. S. Kaufman, Org. Lett., 2005, 7, 3701 CrossRef CAS PubMed; (d) C. C. Silveira, C. R. Bernardi, A. L. Braga and T. S. Kaufman, Tetrahedron Lett., 2003, 44, 6137 CrossRef CAS; (e) E. Ascic, C. L. Hansen, S. T. Le Quement and T. E. Nielsen, Chem. Commun., 2012, 48, 3345 RSC.
  12. (a) K. V. Gothelf, R. G. Hazell and K. A. Jørgensen, J. Org. Chem., 1996, 61, 346 CrossRef CAS; (b) F. Amblard, J. H. Cho and R. F. Schinazi, Chem. Rev., 2009, 109, 4207 CrossRef CAS PubMed; (c) N. Candelon, D. Lastecoueres, A. K. Diallo, J. Ruiz Aranzaes, D. Astruc and J.-M. Vincent, Chem. Commun., 2008, 741 RSC; (d) Z. P. Demko and K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2110 CrossRef CAS; (e) R. Huisgen, Angew. Chem., 1963, 75, 604 CrossRef CAS; (f) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596 CrossRef CAS; (g) Y.-Q. Zou, L.-Q. Lu, L. Fu, N.-J. Chang, J. Rong, J.-R. Chen and W.-J. Xiao, Angew. Chem., Int. Ed., 2011, 50, 7171 CrossRef CAS PubMed; (h) C. Yu, Y. Zhang, S. Zhang, H. Li and W. Wang, Chem. Commun., 2011, 47, 1036 RSC.
  13. (a) J. Xuan, Y. Cheng, J. An, L.-Q. Lu, X.-X. Zhang and W.-J. Xiao, Chem. Commun., 2011, 47, 8337 RSC; (b) A. B. Dounay, P. G. Humphreys, L. E. Overman and A. D. Wrobleski, J. Am. Chem. Soc., 2008, 130, 5368 CrossRef CAS PubMed; (c) W. H. Pearson and K.-C. Lin, Tetrahedron Lett., 1990, 31, 7571 CrossRef CAS; (d) H.-L. Huang, W.-H. Sung and R.-S. Liu, J. Org. Chem., 2001, 66, 6193 CrossRef CAS PubMed.
  14. (a) P. T. Parvatkar, P. S. Parameswaran and S. G. Tilve, Chem.–Eur. J., 2012, 18, 5460 CrossRef CAS PubMed; (b) H. Togo and S. Iida, Synlett, 2006, 14, 2159 CrossRef; (c) M. J. Mphahlele, Molecules, 2009, 14, 4814 CrossRef CAS PubMed; (d) B. P. Bandgar and K. A. Shaikh, Tetrahedron Lett., 2003, 44, 1959 CrossRef CAS; (e) S. V. More, M. N. V. Sastry, C.-C. Wang and C.-F. Yao, Tetrahedron Lett., 2005, 46, 6345 CrossRef CAS; (f) D. Fischer, H. Tomeba, N. K. Pahadi, N. T. Patil, Z. Huo and Y. Yamamoto, J. Am. Chem. Soc., 2008, 130, 15720 CrossRef CAS PubMed; (g) Y. Yamamoto, H. Hayashi, T. Saigoku and H. Nishiyama, J. Am. Chem. Soc., 2005, 127, 10804 CrossRef CAS PubMed; (h) F. C. Küpper, M. C. Feiters, B. Olofsson, T. Kaiho, S. Yanagida, M. B. Zimmermann, L. J. Carpenter, G. W. Luther, Z. Lu, M. Jonsson and L. Kloo, Angew. Chem., Int. Ed., 2011, 50, 11598 CrossRef PubMed; (i) G. Ramachandran, N. S. Karthikeyan, P. Giridharan and K. I. Sathiyanarayanan, Org. Biomol. Chem., 2012, 10, 5343 RSC; (j) J.-M. Huang, Z.-J. Ye, D.-S. Chen and H. Zhu, Org. Biomol. Chem., 2012, 10, 3610 RSC; (k) J. Wu, H.-G. Xia and K. Gao, Org. Biomol. Chem., 2006, 4, 126 RSC; (l) R. Yella, N. Khatun, S. K. Rout and B. K. Patel, Org. Biomol. Chem., 2011, 9, 3235–3245 RSC; (m) Y.-X. Li, K.-G. Ji, H.-X. Wang, S. Ali and Y.-M. Liang, J. Org. Chem., 2010, 76, 744 CrossRef PubMed; (n) N. Fei, Q. Hou, S. Wang, H. Wang and Z.-J. Yao, Org. Biomol. Chem., 2010, 8, 4096 RSC; (o) J. Mao, Q. Hua, G. Xie, Z. Yao and D. Shi, Eur. J. Org. Chem., 2009, 2262 CrossRef CAS; (p) I. Cikotiene, Eur. J. Org. Chem., 2012, 2766 CrossRef CAS; (q) Y. Yuan and H. Zhu, Eur. J. Org. Chem., 2012, 329 CrossRef CAS.
  15. (a) K. Zmitek, M. Zupan, S. Stavber and J. Iskra, J. Org. Chem., 2007, 72, 6534 CrossRef CAS PubMed; (b) X.-F. Lin, S.-L. Cui and Y. Wang, Tetrahedron Lett., 2006, 47, 4509 CrossRef CAS; (c) H. Batchu, S. Bhattacharyya and S. Batra, Org. Lett., 2012, 14, 6330 CrossRef CAS PubMed; (d) X.-F. Lin, S.-L. Cui and Y. Wang, Tetrahedron Lett., 2006, 47, 3127 CrossRef CAS; (e) S. U. Tekale, S. S. Kauthale, S. A. Dake, S. R. Sarda and R. P. Pawar, Curr. Org. Chem., 2012, 16, 1485 CrossRef CAS; (f) X. F. Lin, X. Dai, Z. Mao and Y. Wang, Tetrahedron, 2009, 65, 9233 CrossRef CAS; (g) X. Li, Z. Mao, Y. Wang, W. Chen and X. F. Lin, Tetrahedron, 2011, 67, 3858 CrossRef CAS; (h) J. W. Sun, Y. M. Dong and L. Y. Cao, J. Org. Chem., 2004, 69, 8932 CrossRef CAS PubMed; (i) S. J. Ji, S. Y. Wang, Y. Zhang and T. P. Loh, Tetrahedron, 2004, 60, 2051 CrossRef CAS.
  16. (a) S. Claessens, J. Jacobs, S. V. Aeken, K. A. Tehrani and N. D. Kimpe, J. Org. Chem., 2008, 73, 7555 CrossRef CAS PubMed; (b) N. Pongprom, H. Bachitsch, A. Bauchinger, H. Ettefagh, T. Haider, M. Hofer, H. Knafl, R. Slanz, M. Waismeyer, F. Wieser and H. Spreitzer, Monatsh. Chem., 2010, 141, 53 CrossRef CAS; (c) J. S. Van Aeken, J. Jacobs, N. De Kimpe and K. Abbaspour Tehrani, Eur. J. Org. Chem., 2009, 4882 Search PubMed.
  17. C. Wang, X.-H. Chen, S.-M. Zhou and L.-Z. Gong, Chem. Commun., 2010, 46, 1275–1277 RSC.
  18. (a) H.-M. Huang, J.-R. Gao, L.-F. Hou, J.-H. Jia, L. Han, Q. Ye and Y.-J. Li, Tetrahedron, 2013, 69, 9033 CrossRef CAS; (b) H.-M. Huang, Y.-J. Li, Y.-P. Dai, W.-B. Yu, Q. Ye and J.-R. Gao, J. Chem. Res., 2013, 37, 34 CrossRef CAS; (c) H.-M. Huang, Y.-J. Li, J.-R. Yang, J.-H. Jia, Q. Ye, L. Han and J.-R. Gao, Tetrahedron, 2013, 69, 5221 CrossRef CAS; (d) H.-M. Huang, Y.-J. Li, Q. Ye, W.-B. Yu, L. Han, J.-H. Jia and J.-R. Gao, J. Org. Chem., 2014, 79, 1084 CrossRef CAS PubMed; (e) Y.-J. Li, H.-M. Huang, H.-Q. Dong, J.-H. Jia, L. Han, Q. Ye and J.-R. Gao, J. Org. Chem., 2013, 78, 9424 CrossRef CAS PubMed; (f) Y.-J. Li, H.-M. Huang, Q. Ye, L.-F. Hou, W.-B. Yu, J.-H. Jia and J.-R. Gao, Adv. Synth. Catal., 2014, 356, 421 CrossRef CAS; (g) H. Huang, J. Han, F. Xu, Y. Li, H. Dong, W. Yu and J. Gao, Chem. Lett., 2013, 42, 921 CrossRef CAS.
  19. ESI..
  20. (a) M. B. Fusaro, V. Chagnault, S. Josse and D. Postel, Tetrahedron, 2013, 69, 5880 CrossRef CAS; (b) N. Mori and H. Togo, Tetrahedron, 2005, 61, 5915 CrossRef CAS; (c) M. Ishihara and H. Togo, Tetrahedron, 2007, 63, 1474 CrossRef CAS.

Footnote

Electronic supplementary information (ESI) available: X-ray crystallographic data (CIF files) of 3ab, spectral data of all compounds and copies of 1H and 13C NMR spectra of products 3. CCDC 915882. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ra01593b

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.