Issue 1, 2015

Integrin-targeted delivery into cancer cells of a Pt(iv) pro-drug through conjugation to RGD-containing peptides

Abstract

Conjugates of a Pt(IV) derivative of picoplatin with monomeric (Pt–c(RGDfK), 5) and tetrameric (Pt–RAFT-{c(RGDfK)}4, 6) RGD-containing peptides were synthesized with the aim of exploiting their selectivity and high affinity for αVβ3 and αVβ5 integrins for targeted delivery of this anticancer metallodrug to tumor cells overexpressing these receptors. Solid- and solution-phase approaches in combination with click chemistry were used for the preparation of the conjugates, which were characterized by high resolution ESI MS and NMR. αVβ3 and αVβ5 integrin expression was evaluated in a broad panel of human cancer and non-malignant cells. SK-MEL-28 melanoma cells were selected based on the high expression levels of both integrins, while CAPAN-1 pancreatic cancer cells and 1BR3G fibroblasts were selected as the negative control. Internalization experiments revealed a good correlation between integrin expression and the cellular uptake of the corresponding fluorescein-labeled peptides and that the internalization capacity of the tetrameric RGD-containing peptide was considerably higher than that of the monomeric one. Cytotoxic experiments indicated that the antitumor activity of picoplatin in melanoma cells was increased by 2.6-fold when its Pt(IV) derivative was conjugated to c(RGDfK) (IC50 = 12.8 ± 2.1 μM) and by 20-fold when conjugated to RAFT-{c(RGDfK)}4 (IC50 = 1.7 ± 0.6 μM). In contrast, the cytotoxicity of the conjugates was inhibited in control cells lacking αVβ3 and αVβ5 integrin expression. Finally, cellular uptake studies by ICP-MS confirmed a good correlation between the levels of expression of integrins, intracellular platinum accumulation and antitumor activity. Indeed, accumulation and cytotoxicity were much higher in SK-MEL-28 cells than in CAPAN-1, being particularly higher in the case of the tetrameric conjugate. The overall results highlight that the great ability of RAFT-{c(RGDfK)}4 to bind to and to be internalized by integrins overexpressed in SK-MEL-28 cells results in higher accumulation of the Pt(IV) complex, leading to a high antitumor activity. These studies provide new insights into the potential of targeting αVβ3 and αVβ5 integrins with Pt(IV) anticancer pro-drugs conjugated to tumor-targeting devices based on RGD-containing peptides, particularly on how multivalency can improve both the selectivity and potency of such metallodrugs by increasing cellular accumulation in tumor tissues.

Graphical abstract: Integrin-targeted delivery into cancer cells of a Pt(iv) pro-drug through conjugation to RGD-containing peptides

Supplementary files

Article information

Article type
Paper
Submitted
04 Sep 2014
Accepted
11 Oct 2014
First published
15 Oct 2014

Dalton Trans., 2015,44, 202-212

Integrin-targeted delivery into cancer cells of a Pt(IV) pro-drug through conjugation to RGD-containing peptides

A. Massaguer, A. González-Cantó, E. Escribano, S. Barrabés, G. Artigas, V. Moreno and V. Marchán, Dalton Trans., 2015, 44, 202 DOI: 10.1039/C4DT02710H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements