Issue 1, 2015

Biomolecule-mediated CdS-TiO2-reduced graphene oxide ternary nanocomposites for efficient visible light-driven photocatalysis

Abstract

We report an environmentally friendly synthetic strategy to fabricate reduced graphene oxide (rGO)-based ternary nanocomposites, in which glutathione (GSH) acts both as a reducing agent for graphene oxide and sulfur donor for CdS synthesis under modified hydrothermal (MHT) conditions. The report becomes interesting as pH variation evolves two distinctly different semiconducting nanocrystals of anatase/rutile TiO2 and hexagonal yellow/cubic red CdS, and their packaging makes them suitable photocatalysts for dye degradation. Herein, a titanium peroxo compound, obtained from commercial TiO2, is hydrolyzed to TiO2 nanostructures without any additives. The yellow colored CdS-TiO2-rGO (YCTG), one of the ternary photocatalysts, shows maximum efficiency compared to the corresponding red ternary CdS-TiO2-rGO or binary photocatalysts (CdS-rGO, TiO2-rGO and CdS-TiO2) for dye degradation under visible light irradiation. Systematic characterizations reveal that TiO2 presents at the interface of rGO and CdS in YCTG and thus makes a barrier that inhibits the direct interaction between rGO and CdS. This leads to a relatively higher bandgap value for CdS in YCTG (2.15 eV vs. 2.04 eV for CdS-rGO) but with better photocatalytic activity simply by diminishing the possibility of the charge-recombination process. In the present situation, rGO in the YCTG also supports faster dye degradation through higher dye adsorption and rapid internal electron transfer (CdS→TiO2→rGO) in the YCTG nanocomposite. Thus, a simple aqueous phase and a greener synthetic procedure results in a low-cost, highly effective visible light-responsive material for environmental application.

Graphical abstract: Biomolecule-mediated CdS-TiO2-reduced graphene oxide ternary nanocomposites for efficient visible light-driven photocatalysis

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2014
Accepted
17 Oct 2014
First published
17 Oct 2014

Dalton Trans., 2015,44, 193-201

Biomolecule-mediated CdS-TiO2-reduced graphene oxide ternary nanocomposites for efficient visible light-driven photocatalysis

S. Dutta, R. Sahoo, C. Ray, S. Sarkar, J. Jana, Y. Negishi and T. Pal, Dalton Trans., 2015, 44, 193 DOI: 10.1039/C4DT02749C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements