Open Access Article
Marena
Manley
Department of Food Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa. E-mail: mman@sun.ac.za
First published on 26th August 2014
Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control method of choice for many more applications due to the advancement in instrumentation, computing power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research performed to better understand complex biological systems, e.g. by means of studying characteristic water absorption bands. The shorter NIR wavelengths (800–2500 nm), compared to those in the mid-infrared (MIR) range (2500–15
000 nm) enable increased penetration depth and subsequent non-destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials. A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using chemometrics. NIR measurements and predictions are, however, considered more reproducible than the usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods, using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension provided by this technology, the images can be analysed and visualised as chemical images providing identification as well as localisation of chemical compounds in non-homogenous samples.
Key learning points(1) Principles of and difference between NIR spectroscopy and NIR hyperspectral imaging.(2) Interpretation and visualisation of NIR spectra and images. (3) Multivariate data and image analysis for quantitative and qualitative analyses. (4) Food and non-food applications of NIR spectroscopy and NIR hyperspectral imaging. |
In spite of being a secondary method (i.e. requiring reference values for the purpose of calibration model development), NIR spectroscopy is now considered equally significant among other major analytical technologies. NIR spectroscopy is, in contrast to most other analytical (e.g. gas and high performance liquid chromatography) and conventional chemical (e.g. Kjeldahl, Soxhlet) methods, rapid, chemical-free, easy to use (once calibrations have been developed) and non-destructive. Although the accuracy of the NIR method depends to a great extent on the accuracy and precision of the reference method, NIR measurements and predictions are considered more reproducible.
NIR spectroscopy is applied as a tool during process analytical technology (PAT) and quality control (QC) as the method of choice in various fields, i.e. agriculture,4 food,5 bioactives,6 pharmaceuticals,7 petrochemicals,8 textiles,9 cosmetics,10 medical applications11 and chemicals such as polymers.12 NIR spectroscopy is also increasingly used in aquaphotomics,13 which has been introduced as a new approach to describe and visualise the interaction of water with solvents with visible and near-infrared (vis-NIR) light absorbance patterns.
Similar to NIR spectroscopy, imaging technology, is not new. The term ‘hyperspectral imaging’ was first used by Goetz et al.14 for remote sensing (i.e. the observation of a target by a device without physical contact) applications.14,15 It was only by the late 1990s that this technology became available for applications in food and agriculture, when it was being applied in association with NIR spectroscopy.15 It is known that NIR spectroscopy only provides a mean spectrum (average measurement) of a sample, irrespective of the area of the sample scanned. As the spectra collected are averaged to provide a single spectrum, the information on spatial distribution of constituents within the sample is thus lost. The development of NIR hyperspectral imaging, which combines NIR spectroscopy with digital imaging, enables both spatial (localisation) and spectral (identification) information to be obtained simultaneously. Hyperspectral images thus have the potential of describing distribution of constituents within a sample. The use of NIR hyperspectral imaging has been and is still being investigated extensively to determine quality and safety of agricultural and food products.15 Other fields of interest and research areas where NIR hyperspectral imaging is increasingly applied include pharmaceuticals,16 medical applications,17 archaeology18 and palaeontology.19
This tutorial review will focus on NIR spectroscopy and NIR hyperspectral imaging analysis of biological materials. The first section will introduce the basic principles of these two techniques, followed by an overview of multivariate data and image analysis techniques for both quantitative and qualitative analysis. The last section will review applications within the respective fields.
The NIR region extends from 800 to 2500 nm (12
500 to 4000 cm−1; 120 to 375 THz), between the visible from 380 to 780 nm (26
316 to 12
820 cm−1; 385–790 THz) and MIR from 2500 to 15
000 nm (4000 to 400 cm−1; 30 to 120 THz) regions. NIR spectra contain information about the major X–H chemical bonds, i.e. C–H, O–H and N–H. All molecules containing hydrogen will have a measurable NIR spectrum, resulting in a large range of organic materials to be suitable for NIR analysis.
Due to the overtone and combination modes and large numbers of possible vibrations, NIR spectra are very complex, consisting of many overlapping peaks (referred to as ‘multicollinearity’), which result in broad bands. This makes it difficult to interpret NIR spectra visually, assign specific features to specific chemical components or extract information contained in the spectra easily. It was, however, realised early on that, with the use of appropriate regression techniques, relationships between absorption values at specific wavelengths and reference values of the constituent to be predicted could be established. Specific chemical constituents are usually identified by a spectral band or more than one wavelength. Towards the end of the 1960s, Norris2 proposed the use of multiple linear regression (MLR) to analyse NIR spectra, which resulted in NIR spectroscopy drawing attention of researchers as a practical non-destructive quantitative analytical technique. In the 1970s, this type of data analysis method used for spectral analysis became known as chemometrics. With the invention of the computer and its subsequent development, chemometrics has developed into a research field in its own right, which has affected the analysis of NIR spectral data significantly.
In spite of NIR spectra comprising overlapping peaks and broad spectral bands, visual spectral interpretation remains vital before any data analysis is performed. Fig. 1 illustrates moisture (O–H stretch first overtone; 1440 to 1470 nm and combination of O–H stretch and O–H deformation, O–H bend second overtone; 1920 to 1940 nm) and protein (N–H bend second overtone, combination of C–H stretch and C
O stretch; combination of C–O stretch, N–H in-plane bend and C–N stretch; 2148 to 2200 nm) absorption bands for ground and whole wheat. Osborne et al.20 contributed significantly to the interpretation of spectra with a detailed list of molecular bonds (related to chemical substances) and the corresponding wavelengths in the NIR region where these bonds absorb. Fig. 2 shows spectra of the ground powder of an herbal tea (honeybush), ground black pepper and olive oil depicting absorption of O–H (moisture; in the tea and black pepper) and C–H (oil; in the olive oil and to some extent in the black pepper) molecular bonds. Extracting information from NIR spectra, however, remains a challenge. Reliable data analysis can only be performed once it has been ensured that the originally collected spectra are of good quality with a high signal-to-noise (S/N) ratio.
![]() | ||
| Fig. 2 Spectra of (a) an herbal tea, (b) ground black pepper and (c) olive oil with absorption of O–H (moisture) and C–H (oil) molecular bonds indicated. | ||
NIR spectra from at least 100 or ideally more samples should be collected for calibration model development. Before any measurements are made, it is important to optimise the preparation and presentation of the sample to the instrument depending on the application e.g. milling, drying, freeze drying. Sample size, orientation (e.g. in the case of single grains) and environmental conditions should also be optimised. To ensure a high S/N ratio 64 or more scans should be recorded per sample. Esteve Agelet and Hurburgh21 emphasised good practices to be followed during sample and spectra collection. NIR spectroscopy being a secondary method requires accurate reference analysis. This might require duplicate analysis that would enable determination of the standard error of the laboratory (SEL), a useful validation statistic to determine the accuracy of the NIR model standard error of prediction (SEP) in comparison to the reference method.
An often overlooked advantage of NIR spectroscopy is that a number of predictions can be made from a single collected spectrum if the sample preparation was the same when the calibration models were developed for these properties. The measurement of e.g. moisture content and chemical composition (e.g. protein, fat, active or bioactive components) is thus possible from a single spectrum. Especially taking the specificity of traditional wet chemistry methods into consideration, only one property can be measured at a time. These methods are usually destructive; thus, each property or constituent is measured on a different sample. In the case of NIR spectroscopy, all properties can be measured on the exact same sample.
The pixels of a digital colour image comprise a combination of primary colours. An RGB image will thus have red, green and blue channels (Fig. 3). A greyscale image has just one channel. An NIR hyperspectral image, obtained when NIR spectroscopy is combined with greyscale digital imaging, comprises single channel images. Each of these greyscale images represents an individual wavelength, and is stacked consecutively to form a hyperspectral image. NIR hyperspectral images are acquired at wavelengths in the NIR region.15 The collected image data is arranged into a three-way data matrix (or hypercube). The first two axes (x and y) of the matrix are the vertical and horizontal pixel coordinates (spatial dimension), while the third (z) axis represents the spectral dimension (wavelengths). The obtained hypercube with its spatial and wavelength dimensions contains an NIR spectrum for each pixel in the image (Fig. 4). Each pixel within an NIR hyperspectral image thus represents a single spectrum, in principle different to its neighbour. Due to the added spatial dimension, spectral (chemical or physical) information is obtained for each pixel in the image. NIR hyperspectral imaging is therefore highly suitable for analysis of samples of heterogeneous nature. From a hyperspectral image, the distribution of constituents (that absorb in the NIR wavelength region), as reflected in the spectra at each pixel, within a sample can be determined and visualised.
Hyperspectral images can be acquired using either of two configurations,15i.e. the staring imager and the pushbroom or linescan system. With the staring imager, whole images are acquired consecutively, one wavelength at a time using either a liquid crystal tunable filter (LCTF) or an acousto-optic tunable filter (AOTF). A disadvantage, though, is that, during the time required to record the wavelengths one by one, changes in the sample can take place. Collecting images with the staring imager takes a few minutes, the samples must be stationary and although high spatial resolution is possible, the images will have a lower spectral resolution. With the linescan or pushbroom system, all spectral information is acquired simultaneously. This is done line by line and requires the sample to move relative to the instrument. Linescan images provide a good compromise between spatial and spectral resolution and an image can be collected within a few seconds. Lately most systems use the much faster pushbroom configuration that simulates movement of samples along a conveyor belt. The pushbroom configuration is thus ideally suited for on-line quality control. It is also possible to collect images point by point (whiskbroom imager) which results in high spectral but low spatial resolution. These systems are, however, not suitable for real-time analysis as it takes more than an hour to collect an image. As for NIR spectroscopy, good imaging practices should be followed as suitably reviewed by Boldrini et al.22
It is possible to obtain useful information from the image even before any data analysis is applied. Apart from the differences or similarities between spectra at each pixel, differences between image planes at respective wavelengths (Fig. 4) can also be determined. This enables visualisation of chemical (or physical) information and potential identification of the chemical component of interest. Fig. 5 shows image planes (of the hypercube) at selected wavelengths for the same slice of bread than that in Fig. 4 after it has been dried for one hour at 60 °C. The loss of moisture can clearly be seen in the image planes at ca. 1450 and 1940 nm when compared to the same image planes in Fig. 4. Fig. 6 shows average spectra of the images of the slice of bread before and after drying illustrating the reduced absorption at the respective moisture bands (1440 to 1470 nm and 1920 to 1940 nm).
![]() | ||
| Fig. 5 The NIR hyperspectral imaging hypercube from the same slice of bread as in Fig. 4, but after it has been dried for 1 h at 60 °C. The decrease in absorption at the moisture bands can be seen in the spectrum of one of the pixels when compared to that in Fig. 4 (see also Fig. 6). Similarly the reduced variation due to moisture is clear in the image planes at ca. 1450 and 1940 nm. Different colours indicate different chemical absorptions or components. | ||
The application of spectral pre-processing methods improve the subsequent data analysis (exploratory analysis, calibration and classification model development) and may be scatter correction methods that also adjust baseline shifts and derivatives.23 Derivatives always apply a smoothing step before calculating the derivative. The most common pre-processing methods, as reviewed by Rinnan et al.,23 include the moving-average method (Savitzky–Golay), normalisation, derivatives (Savitzky–Golay), multiplicative scatter correction (MSC) and standard normal variate (SNV).21 MSC and SNV are two methods well known for their ability to correct for spectral distortions due to multiplicative scattering,23 commonly noticed when samples consist of particles differing in size. Different particle sizes cause scattering which results in additive variation of the spectra baseline intensity (baseline slope) as the wavelengths increase. Derivatives (such as Savitzky–Golay) can also correct for this.23 In addition, derivatives could also solve the most common problem of NIR spectroscopy, i.e. overlapping peaks.
Mean centring of spectra is a pre-processing technique mostly used with principal component analysis (PCA).21 It entails the calculation of the average spectrum of the data set with subsequent subtraction of this average from each spectrum. Another benefit of mean centring is that it reduces the number of variables to be used; the final model then becomes much less complex. PCA is an explorative data analysis technique usually employed to view data for inconsistencies and outliers before regression techniques are applied.
The selection of the most appropriate spectral pre-processing and regression methods is usually done through trial and error. Calibration and prediction statistics are evaluated to select the most accurate calibration model with an optimum number of components.
The need for calibration model development means that NIR spectroscopy is a secondary method and that the accuracy of the method depends to a large extent on the accuracy and repeatability of the reference method. The first step in quantitative NIR calibration model development thus involves acquiring a set of calibration or training samples with known reference values (chemical constituents, physical characteristics or other indirect properties) covering the range of variation expected in unknown samples to be analysed in future.20 To develop a calibration model, a mathematical relationship must be established between the NIR spectra and the respective reference values previously determined by an independent analytical method for each sample. This can be done on either raw or pre-processed spectra. Unless scattering properties are contributing to the property measured, pre-processed spectral data are most commonly used.
The property to be measured during NIR calibration model development should be either of organic nature (e.g. moisture or protein that will absorb in the NIR region through direct measurement), be correlated with a physical characteristic (e.g. particle size), or it should be a compound that does not absorb in the NIR region but can be measured through co-variation or in other words indirect measurement (e.g. salt content). The aim of model development is to fit the NIR spectral data and reference values to a straight line and to compare it statistically to a theoretically perfect line through the origin at 45° to both axes.20 This calibration model, after being adequately validated on an independent validation set, can then be used to predict the properties or constituents in unknown samples on the basis of their NIR spectra. Regression methods commonly used are multiple linear regression (MLR), which utilises only selected wavelengths, PCR and PLS regression. MLR is the easiest way to perform an inverse multivariate calibration based on least square fitting of the reference to the spectral data. Although it is usually applied when only a limited number of discrete wavelengths are available, it can also be applied to full spectrum data sets. It is most often applied according to the stepwise forward method where the first wavelength to be selected will be the one with the highest correlation. The regression then finds the next wavelength, which will increase the correlation (e.g. coefficient of determination (R2)) and reduce the error (e.g. standard error of prediction (SEP)). The process stops when addition of another wavelength has no effect or starts to reduce the correlation and increase the error. PCR or PLS regression both use the whole spectrum to calculate linear combinations (components) for regression modeling. More detail on the principles of these methods can be found in Osborne et al.20 and Næs et al.24
During development of multivariate calibrations, a crucial aspect to consider is the correct selection of calibration and validation samples.21,25 Validation samples should have no influence on the calibration procedure or selection of best calibration model; it should thus not be used to select the optimum number of components. Validation sets should be collected from experiments different to that of the calibration set. E.g. it should be agricultural samples from a new harvest season or chemical samples from a new batch. If a validation set is not selected to be completely independent, the predictive performance of a calibration, validated in this manner, is likely to be overestimated, as could be the case when using cross-validation. During cross-validation a single sample or groups of samples are consecutively removed from the calibration set and used as validation samples during a number of prediction iterations and the standard error of cross-validation (SECV) or root mean standard error of cross-validation (RMSECV; corrected for bias) reported. For efficient validation of a calibration model, an entirely independent validation set should be used.25 Finally, an important aspect when developing NIR calibration models, is the correct reporting of calibration and prediction statistics for efficient interpretation of the repeatability and accuracy of the developed calibration model.25 Prediction statistics that are important to report include standard error of prediction (SEP) or root mean standard error of prediction (RMSEP; corrected for bias) and coefficient of determination (R2). For interpretation of accuracy of prediction models it is also advisable to consider the standard error of laboratory (SEL) as indication of reproducibility of the reference method. The RPD which is the ratio of the standard error in prediction to the standard deviation (of the validation samples) is also advisable to use to illustrate suitability of prediction models. It attempts to scale the error in prediction with the standard deviation of the property. RPD values greater than 3 are useful for screening, values greater than 5 can be used for quality control, and values greater than 8 for any application.
Reasons have been identified that could result in decreased accuracy of NIR calibration models.34 (1) A narrow range in the variability of the reference values (i.e. low SD) is known to impact negatively on NIR predictability. In a quality control environment, it is difficult to obtain samples with a wide range of variability and this problem is thus not easy to solve. (2) Analytical differences exist when using e.g. the Kjeldahl method to measure nitrogen content. This could affect crude protein predictions. Similarly, if there are large errors or if poor reproducibility is observed for the reference method it would reduce NIR prediction accuracy. (3) If NIR spectra are collected from intact samples (preferred for commercial on-line measurement) it could result in reduced accuracy due to the heterogeneity of the samples. Although not ideal, chemical composition can be predicted more accurately on homogeneously milled or minced than on intact samples and even more so if a finer sieve size or grind is used. (4) Determination of minerals remains a challenge. Similar to salt (NaCl), pure minerals or inorganic compounds do not absorb in the NIR region. Measurement of e.g. ash content is thus possible due to associations of the mineral content with the organic fraction of the sample or by forming salts that modify the spectra, most likely the water bands.
Qualitative multivariate data analysis techniques or pattern recognition methods, compare NIR spectra and search for similarities or differences within the spectra.23,26 The aim is to develop classification models that would give as many correct classifications as possible. The first step is always to determine the number of classes to be considered and the specific requirements that a sample has to fulfil in order to be assigned to a certain class.
Two different approaches can be used during qualitative applications of NIR spectroscopy, i.e. unsupervised and supervised.27 When using supervised methods, the classes of the sample set used for classification model development (i.e. the training set) are known beforehand whereas, in unsupervised methods, there is no information available about the class structure. Unsupervised methods, e.g. PCA, are mostly used as investigative tools in the early stages of data analysis to determine possible relationships between samples. Supervised methods commonly used are soft independent modelling of class analogy (SIMCA), linear discriminant analysis (LDA), multiple discriminant analysis (MDA), factorial discriminant analysis (FDA), PLS discriminant analysis (PLS-DA), canonical variate analysis (CVA), artificial neural networks (ANNs) and k-nearest neighbour (k-NN) analysis. These methods, as applicable for authentication studies, have been summarised by Manley et al.27 Detailed explanations of these and other qualitative (classification) techniques such as support vector machine (SVM) classification can be found in Næs et al.24
000 spectra. Multivariate image analysis (MIA) techniques are required to handle such large data sets.28 The input data for MIA is usually a hypercube, but it can also be a mosaic (number of combined hypercubes).28 Once a hypercube has been selected or a mosaic constructed, a number of MIA techniques may be applied. These techniques are usually applied in a specific sequence and repeated a number of times, with changes in e.g. pre-processing techniques, until the optimum regression or classification model has been developed. The image analysis sequence usually starts with cleaning of the image, which involves removal of unwanted background and correction of shading effects. This is followed by exploratory analysis (e.g. PCA) before regression (e.g. PLS) or classification (e.g. PLS-DA) models are developed. Because of the huge amount of available data, model development results can successfully be visualised by means of plots (e.g. PCA scores plots) and images (e.g. PCA scores images or PLS-DA classification images). If nonlinear regression modelling needs to be addressed, artificial neural networks (ANN) may be considered.
The same principles as for NIR spectroscopy are employed when the regression techniques MLR, PCR and PLS are applied to hyperspectral images.28,29 However, in contrast to NIR spectroscopy, the number of samples (or spectra) used for image regression models is much larger (ca. 200
000) than the number of variables (ca. 240). In the case of NIR spectroscopy these two are almost the same (ca. 200). The large number of available spectra enables representative selection of calibration (training) and validation (test) sets. The main advantage of images is that all samples (spectra) have spatial coordinates.28 This makes construction of classification and prediction images possible. These images can be visually inspected and interpreted. A disadvantage of multivariate image regression, though, is that in principle, the reference values for all the calibration samples (thus each spectrum at every pixel) should be known. Determination of these values at each pixel position in an image, using traditional methods (wet chemistry) is not feasible. An average reference value (obtained from the whole imaged sample) is usually used. This limitation needs to be considered when NIR hyperspectral imaging is used for quantitative measurement and improved methods might need to be developed in future.
The success of MIA depends mostly on the quality of the spectral data, image cleaning and data pre-processing. Due to the vast amount of data available, the assessment of regression models or prediction results can be visualised as histograms and concentrations or heat maps (graphical representation of data as colours).28 MIA thus provides a powerful tool for increasing the evaluation and understanding of sample constituent concentrations and their distribution or spatial variation throughout the sample matrix.
Clusters can also be obtained with PCA, an unsupervised method, using distances between the samples (pixels) in the multivariate space. PCA is well suited for hyperspectral images as it can handle many spectra (pixels) at a time and can also be used for classification.28 The benefit of applying PCA, which is also a data reduction technique, is that it reduces the data set comprising 100
000s spectra to a smaller number of latent variables for further usage and/or interpretation. Classification results can be visualised as principal component (PC) scores images, PC scores plots, classification plots and classification images. Fig. 7 illustrates how multivariate image analysis enables visualisation of results. The PC scores image enables visualisation of similarity in samples by means of a heat map. In this case similar colours refer to similar score values which can be interpreted as characteristics, e.g. similar chemical composition. This allows one to distinguish between, in this case, hard (H) and soft (S) maize kernels. The PC scores plot shows clusters illustrating similarity between spectra (pixels) based on distances in the multivariate space. These clusters can be assigned dummy variables and can be shown as a classification plot and subsequently be projected onto the scores image to form a classification image. In this case, the clusters in the PCA scores plot obtained were due to differences in endosperm texture of whole maize kernels. Relevant information in imaging data is often only being observed in lower-order principal components and not in e.g. principal component one. It is thus important to evaluate these components also.
Successful implementation of NIR calibrations, whether quantitative or qualitative, requires robust calibration models, large datasets including inherent variation, availability of powerful computers, optimised spectral pre-processing methods and suitable regression techniques, such as PLS.20,24 Variation included in data sets could comprise e.g. several geographical areas, varying climatic conditions, seasons and scanning conditions, such as temperature of the sample when collecting the spectra. Another crucial aspect, not considered often enough in any NIR application is that protocols must be put in place to enable and ensure regular maintenance and updates of calibration models. More research should also be performed to understand calibration techniques in terms of the physics of NIR light propagation in the sample better.29
Most applications referred to in this tutorial review are based on direct measurement predictions. NIR spectroscopy applications within food and agriculture still dominate with applications in food safety foremost in recent NIR hyperspectral applications. A brief review of some non-food applications is also included (e.g. wood and wood products, soil, medical applications and pharmaceuticals). This tutorial review will be concluded with detection of food adulteration and aquaphotomics.
Since 1998, most NIR hyperspectral imaging applications and thus also review papers mainly focussed on food quality detection. Commodities considered included wheat (e.g. preharvest germination) and maize (e.g. moisture and oil content), apples (e.g. bitter pit and bruise detection) and other fruit (e.g. peach, strawberry), cucumber (e.g. chilling injury), beef (tenderness), pork (marbling), and fish fillets (fat and moisture content and detection of nematodes and parasites).15 Feng and Sun33 advanced on reviews covering mainly food quality, and focussed their review on the application of NIR hyperspectral imaging to food safety assessment. Some of the first NIR hyperspectral imaging food safety applications since 1998 included faecal contamination on fruit, vegetables and chicken carcasses, followed by detection of defects in fruit and vegetables and diseased chicken carcasses, fungal contamination of cereal grains, and parasites on or in fish.33
Other applications included the prediction of a number of sensory attributes in meat and meat products (e.g. flavour; SEP = 0.20–1.20; RPD = 0.57–1.40) together with its ability to classify meat samples based on quality (60–100% correct classification).34 Attempting to predict sensory attributes of meat, only beef tenderness could be predicted with reasonable accuracy (SEP = 0.35; RPD = 3.82).34 The lack of accurate prediction of sensory properties was due to the heterogeneity of intact meat samples, inconsistent sample preparation or presentation to the instrument, inaccurate reference methods and/or the subjectivity of taste panels.
During the late 1990s and early 2000s, the first NIR hyperspectral imaging study on meat, i.e. faecal detection on chicken carcasses, were reported.33 This application has been implemented in a real-time inspection line. Meat quality measurements such as beef tenderness prediction, only followed in the late 2000s.35 Wavelength ranges at the time included the visible region and only up to about 1100 nm due to the lower cost of silicon-based detectors compared to the more expensive InGaAs-based HgCdTe-based array detectors required for wavelength ranges from 1100 to 2500 nm. As is often the case with investigations using a new technology, these initial studies were only feasibility studies and they leave room for further investigations, especially in terms of validation of the developed methods.
The capacity of NIR spectroscopy to predict sensory attributes of cheese such as visual evaluation (presence of holes, SEP = 0.4; RPD = 2.4); texture measurements (hardness, SEP = 0.1; RPD = 3.3; chewiness, SEP = 0.2; RPD = 2.7; creamy, SEP = 0.4; RPD = 1.6); taste (salty, SEP = 0.3; RPD = 1.6; buttery flavour, SEP = 0.3; RPD = 2.1; rancid flavour, SEP = 0.3; RPD = 2.3) and sensations such as pungency (SEP = 0.3; RPD = 2.6) and retronasal sensation (SEP = 0.2; RPD = 2.6) were illustrated by the research group of González-Martín.38 It is especially this qualitative type of calibration development that has progressed significantly in recent years.37 A more recent paper by González-Martín et al.39 illustrated the good potential of NIR spectroscopy to predict volatile compounds in milk, i.e. 2-nonanone (SEP = 0.087; RPD = 3.4), acetaldehyde (SEP = 0.041; RPD = 2.3), ethanol (SEP = 3.89; RPD = 2.8), 2-heptanone (SEP = 0.17; RPD = 2.8), 2-butanol (SEP = 1.20; RPD = 2.1) and 2-pentanone (SEP = 0.41; RPD = 2.0).
Milk is a challenging matrix to study, since it is a turbid opaque liquid and highly scattering due to the presence of milk fat globules and casein micelles in suspension. It is, however, possible to separate the effects of scatter and absorption.37 Based on the theory and fundamental principles of scatter, scientists might be able to use the proposed strategy to describe the chemical and physical properties of milk as well as other highly scattering materials better.
What remains to be addressed to improve the effective use of NIR spectroscopy on dairy products are:37 (1) whether either reflectance or transmission spectroscopy should be used; (2) an optimum wavelength range to be used for dairy analysis; (3) careful consideration of sample selection and preparation for calibration development purposes; and (4) optimum pre-processing techniques to deal with particle size distribution variation between samples (such as milk powders).
The availability of only a few reports on the use of NIR hyperspectral imaging in dairy products is potentially due to the homogeneity of the liquid and powdered milk samples and the difficulty to analyse cheese due to the heat generated by the light source and longer acquisition time (up to a few minutes) of earlier systems.15 With pushbroom imaging systems (which acquire images within a few seconds) more readily available, the analysis of cheese products should increase.
In a more recent study, the gross energy of food grade legumes were predicted (SEP = 0.025 kcal g−1; RPD = 4.2).40 The standard error was very low compared to that of the reference method (0.204 kcal g−1), i.e. the adiabatic bomb calorimeter.
Numerous NIR hyperspectral imaging investigations have been executed on fruit and vegetables during the last decade.15,29 Due to the penetration depth required, most of the applications were performed in the shorter wavelength ranges of the NIR region (up to 1000 nm); often also including the visible range. This may be ascribed to affordable imaging instrumentation available at the time, which only operates in the shorter wavelengths region. Quality aspects important for fresh fruit and vegetables include measurement of firmness and SSC with detection of early bruising and chilling injury also being important.15,29 One of the most significant benefits of NIR hyperspectral imaging is that defects such as bruising can be detected and visualised in principal component images or classification plots before they are actually visible on the fruit itself. This enables the opportunity to prevent fruit and vegetable with potentially short shelf-life to enter the supply chain. Safety aspects were addressed by means of detection of faecal contamination on fruit and vegetables (although mostly on apples) and received significant attention since the early 2000s.33
When using NIR hyperspectral imaging to analyse whole cereal grains, a significant advantage is that, although a number of grains can be imaged simultaneously, prediction results from single kernels are obtained. Single kernel analyses with NIR spectroscopy are time-consuming and can be complicated due to the difference in kernel size and alignment when presenting it to the instrument. Elmasry et al.15 reviewed cereal applications covering both quality and safety aspects. The heterogeneous nature of cereal grains, both within and between kernels, makes it highly suitable for image analysis. Both quantitative (e.g. moisture, oil and oleic content in maize) and qualitative (e.g. classification of wheat classes based on quality, and maize based on kernel hardness) analyses have been performed. Detection of fungal infection in maize has also been considered.
The use of NIR spectroscopy has also great potential to follow the red wine fermentation process by means of ethanol (SEC = 0.15%) and sugar (SEC = 2.6 g L−1) contents.41 A problem identified when monitoring wine fermentation was the change in the sample matrix during the course of fermentation and subsequent analysis.
A need identified,41 as for many other applications, is the availability of inexpensive portable hand-held instruments, especially for the measurement of the compositional quality of grapes while still on the vine. This has since become a reality with the development of not only portable but especially low-cost miniature instruments.30 More investigations using miniature instruments are foreseen in the near future.
The implementation of suitable, economical portable instruments is thus required as alternatives to laboratory systems.45 Where suitably accurate NIR models is required for the commercial environment, using NIR spectroscopy as a screening tool in breeding programmes, analytical accuracy might not be necessary and the accuracy obtained with portable systems might be acceptable.
Schwanninger et al.,46 extensively reviewed NIR band assignments for wood, and compiled detailed tables comprising band locations in both wavenumber (cm−1) and wavelength (nm), the component likely to absorb at this band location, the bond vibration, as well as descriptive remarks. Knowledge of the band locations where chemical or functional groups absorb is indispensable for a better understanding of the underlying chemistry behind developed multivariate calibration models.
The highly heterogeneous nature of the wood sample matrix and the importance to know the spatial distribution of wood properties, make wood highly suitable for NIR hyperspectral imaging. With the spatial advantage and ability to visualise NIR hyperspectral image analysis results, more research is required to benefit from this advantage in terms of improved knowledge on the overall heterogeneity of the wood sample matrices. This could lead to a better understanding of the effect of the environment on wood structure.
Spectra from field samples are not necessarily worse than spectra from appropriate collected and well-prepared laboratory soil samples.47 In-field or on-site measurements should be considered more often, with no sampling or sample preparation required. There is also a need for better handling of the variability and complexity of soils and a better understanding of the physical basis for the reflection of light from soils.47
With the outbreak of the milk powder scandal (addition of melamine) in China in 2008,33 and the more recent meat adulteration scandal, the detection of adulterants and consideration of appropriate detection methods received renewed attention.48,49 NIR spectroscopy was considered in favour of Kjeldahl to detect melamine since the Kjeldahl method fails to distinguish between protein-based nitrogen and non-protein nitrogen (derived from small organic molecules such as melamine). The Dumas method also cannot eliminate the negative influence of non-protein nitrogen on the determination of protein levels. The challenge of detecting and quantifying melamine is the very low levels (often present only in ppm). Fu et al.,50 however, claimed that NIR hyperspectral imaging (990–1700 nm) and spectral similarity analyses were effective to detect different concentrations of melamine adulteration (from 0.025 to 1%) in milk powders. They suggested an improvement in the accuracy of these techniques to even lower levels (<0.02% or 200 ppm) by spreading the sample mixtures in a thin layer in larger containers to increase the surface area presented for NIR hyperspectral imaging.
| This journal is © The Royal Society of Chemistry 2014 |