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Near-infrared spectroscopy and hyperspectral
imaging: non-destructive analysis of
biological materials

Marena Manley

Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical

technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and

put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control

method of choice for many more applications due to the advancement in instrumentation, computing

power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research

performed to better understand complex biological systems, e.g. by means of studying characteristic

water absorption bands. The shorter NIR wavelengths (800–2500 nm), compared to those in the mid-

infrared (MIR) range (2500–15 000 nm) enable increased penetration depth and subsequent non-

destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials.

A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using

chemometrics. NIR measurements and predictions are, however, considered more reproducible than the

usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to

it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods,

using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance

liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic

theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the

recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging

provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral

band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension

provided by this technology, the images can be analysed and visualised as chemical images providing

identification as well as localisation of chemical compounds in non-homogenous samples.

Key learning points
(1) Principles of and difference between NIR spectroscopy and NIR hyperspectral imaging.
(2) Interpretation and visualisation of NIR spectra and images.
(3) Multivariate data and image analysis for quantitative and qualitative analyses.
(4) Food and non-food applications of NIR spectroscopy and NIR hyperspectral imaging.

Introduction

The first non-visible region in the absorption spectrum,
i.e. near-infrared (NIR), was discovered in 1800 by Frederick
William Herschel, a professional musician and astronomer.1

The NIR region was, however, not considered significant until
150 years later. During this time, analytical techniques that

could provide more unambiguous results were favoured over
NIR spectroscopy, especially in terms of the explanation of
molecular structures (e.g. mid-infrared (MIR) spectroscopy).
The principles of chemical or gravimetrical methods such as
Kjeldahl for protein determination and oven drying for moisture
analysis, respectively, was also more clearly understood at the
time. The subsequent revival of the NIR region and development
of NIR technology (since 1949) have been documented by Karl
Norris,2 known to have pioneered NIR spectroscopy develop-
ment. The greatest impact on the progression of NIR technology
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was, however, in the early 1970s, when Phil Williams started using
NIR spectroscopy to measure protein and moisture contents as a
basis for trading wheat. The development of NIR technology, from
its initial discovery in 1800 until 2003, highlighting the most
important citations dealing with NIR technology during this time,
has been extensively reviewed by McClure.3

In spite of being a secondary method (i.e. requiring reference
values for the purpose of calibration model development), NIR
spectroscopy is now considered equally significant among other
major analytical technologies. NIR spectroscopy is, in contrast to
most other analytical (e.g. gas and high performance liquid
chromatography) and conventional chemical (e.g. Kjeldahl,
Soxhlet) methods, rapid, chemical-free, easy to use (once calibra-
tions have been developed) and non-destructive. Although the
accuracy of the NIR method depends to a great extent on the
accuracy and precision of the reference method, NIR measure-
ments and predictions are considered more reproducible.

NIR spectroscopy is applied as a tool during process analytical
technology (PAT) and quality control (QC) as the method of choice
in various fields, i.e. agriculture,4 food,5 bioactives,6 pharma-
ceuticals,7 petrochemicals,8 textiles,9 cosmetics,10 medical
applications11 and chemicals such as polymers.12 NIR spectro-
scopy is also increasingly used in aquaphotomics,13 which has
been introduced as a new approach to describe and visualise
the interaction of water with solvents with visible and near-
infrared (vis-NIR) light absorbance patterns.

Similar to NIR spectroscopy, imaging technology, is not new.
The term ‘hyperspectral imaging’ was first used by Goetz et al.14

for remote sensing (i.e. the observation of a target by a device
without physical contact) applications.14,15 It was only by the
late 1990s that this technology became available for applications
in food and agriculture, when it was being applied in association
with NIR spectroscopy.15 It is known that NIR spectroscopy only
provides a mean spectrum (average measurement) of a sample,
irrespective of the area of the sample scanned. As the spectra

collected are averaged to provide a single spectrum, the informa-
tion on spatial distribution of constituents within the sample is
thus lost. The development of NIR hyperspectral imaging, which
combines NIR spectroscopy with digital imaging, enables both
spatial (localisation) and spectral (identification) information to
be obtained simultaneously. Hyperspectral images thus have the
potential of describing distribution of constituents within a
sample. The use of NIR hyperspectral imaging has been and is
still being investigated extensively to determine quality and
safety of agricultural and food products.15 Other fields of interest
and research areas where NIR hyperspectral imaging is increasingly
applied include pharmaceuticals,16 medical applications,17

archaeology18 and palaeontology.19

This tutorial review will focus on NIR spectroscopy and
NIR hyperspectral imaging analysis of biological materials.
The first section will introduce the basic principles of these
two techniques, followed by an overview of multivariate data
and image analysis techniques for both quantitative and qualitative
analysis. The last section will review applications within the
respective fields.

Fundamental principles of near-
infrared spectroscopy

Spectra in the NIR region result from energy absorption by
organic molecules, and comprise overtones and combinations
of overtones originating from fundamental bond vibrations
(stretching or bending) occurring in the mid-infrared (MIR)
region of the spectrum. The features in NIR spectra of organic
compounds are thus orders of magnitude weaker than those in
the MIR. Overtones can be found by dividing the wavelengths in
the infrared region by approximately 2, 3 or 4 and provide the
advantage of a dilution series. NIR spectra can thus be collected
directly on samples without the need for dilution, enabling
direct analysis of solid samples. Ease of sample preparation
and presentation results in NIR spectroscopy often being used
in favour of MIR spectroscopy.

The NIR region extends from 800 to 2500 nm (12 500 to
4000 cm�1; 120 to 375 THz), between the visible from 380 to
780 nm (26 316 to 12 820 cm�1; 385–790 THz) and MIR from
2500 to 15 000 nm (4000 to 400 cm�1; 30 to 120 THz) regions.
NIR spectra contain information about the major X–H chemical
bonds, i.e. C–H, O–H and N–H. All molecules containing hydrogen
will have a measurable NIR spectrum, resulting in a large range
of organic materials to be suitable for NIR analysis.

Due to the overtone and combination modes and large numbers
of possible vibrations, NIR spectra are very complex, consisting
of many overlapping peaks (referred to as ‘multicollinearity’),
which result in broad bands. This makes it difficult to interpret
NIR spectra visually, assign specific features to specific chemical
components or extract information contained in the spectra
easily. It was, however, realised early on that, with the use of
appropriate regression techniques, relationships between absorp-
tion values at specific wavelengths and reference values of the
constituent to be predicted could be established. Specific chemical
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constituents are usually identified by a spectral band or more
than one wavelength. Towards the end of the 1960s, Norris2

proposed the use of multiple linear regression (MLR) to analyse
NIR spectra, which resulted in NIR spectroscopy drawing
attention of researchers as a practical non-destructive quanti-
tative analytical technique. In the 1970s, this type of data
analysis method used for spectral analysis became known as
chemometrics. With the invention of the computer and its
subsequent development, chemometrics has developed into a
research field in its own right, which has affected the analysis
of NIR spectral data significantly.

In spite of NIR spectra comprising overlapping peaks and
broad spectral bands, visual spectral interpretation remains vital
before any data analysis is performed. Fig. 1 illustrates moisture
(O–H stretch first overtone; 1440 to 1470 nm and combination of
O–H stretch and O–H deformation, O–H bend second overtone;
1920 to 1940 nm) and protein (N–H bend second overtone,
combination of C–H stretch and CQO stretch; combination
of C–O stretch, N–H in-plane bend and C–N stretch; 2148 to
2200 nm) absorption bands for ground and whole wheat.
Osborne et al.20 contributed significantly to the interpretation
of spectra with a detailed list of molecular bonds (related to
chemical substances) and the corresponding wavelengths in the
NIR region where these bonds absorb. Fig. 2 shows spectra of the
ground powder of an herbal tea (honeybush), ground black
pepper and olive oil depicting absorption of O–H (moisture; in

the tea and black pepper) and C–H (oil; in the olive oil and to
some extent in the black pepper) molecular bonds. Extracting
information from NIR spectra, however, remains a challenge.
Reliable data analysis can only be performed once it has been
ensured that the originally collected spectra are of good quality
with a high signal-to-noise (S/N) ratio.

NIR spectra from at least 100 or ideally more samples should be
collected for calibration model development. Before any measure-
ments are made, it is important to optimise the preparation and
presentation of the sample to the instrument depending on the
application e.g. milling, drying, freeze drying. Sample size, orienta-
tion (e.g. in the case of single grains) and environmental conditions
should also be optimised. To ensure a high S/N ratio 64 or more
scans should be recorded per sample. Esteve Agelet and Hurburgh21

emphasised good practices to be followed during sample and
spectra collection. NIR spectroscopy being a secondary method
requires accurate reference analysis. This might require duplicate
analysis that would enable determination of the standard error
of the laboratory (SEL), a useful validation statistic to determine
the accuracy of the NIR model standard error of prediction
(SEP) in comparison to the reference method.

An often overlooked advantage of NIR spectroscopy is that a
number of predictions can be made from a single collected spec-
trum if the sample preparation was the same when the calibration
models were developed for these properties. The measurement
of e.g. moisture content and chemical composition (e.g. protein,
fat, active or bioactive components) is thus possible from a
single spectrum. Especially taking the specificity of traditional
wet chemistry methods into consideration, only one property can
be measured at a time. These methods are usually destructive;
thus, each property or constituent is measured on a different
sample. In the case of NIR spectroscopy, all properties can be
measured on the exact same sample.

Fundamental principles of near-
infrared hyperspectral imaging

The main advantage of NIR hyperspectral imaging is that it
facilitates visualisation of the distribution of different chemical

Fig. 1 Typical NIR spectra of a biological material, in this case (a) ground
and (b) intact whole wheat with moisture (1440 to 1470 nm and 1920 to
1940 nm) and protein (2148 to 2200 nm) absorption bands indicated.

Fig. 2 Spectra of (a) an herbal tea, (b) ground black pepper and (c) olive
oil with absorption of O–H (moisture) and C–H (oil) molecular bonds indicated.
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components in a sample. Due to a spectrum collected at each
pixel in the image, it is most suitable for analysis of hetero-
geneous samples. Whereas the initial imaging systems (staring)
required the samples to be stationary, newer systems (pushbroom)
collect images from moving samples, enabling online analysis.
The main disadvantages of NIR hyperspectral imaging include it
being costly, especially when wavelengths up to 2500 nm are
required. Wavelengths from 1100 to 2500 nm requires the more
expensive indium gallium arsenide (InGaAs)-based or mercury
cadmium telluride (HgCdTe)-based array detectors whereas for
wavelengths op to 1100 nm the lower cost silicon-based detectors
can be used. Data collection and analysis requires sensitive
detectors and fast computers, respectively and substantial data
storage capacity is required due to the size of the hyperspectral
images. As for NIR spectroscopy the challenge of extraction of
only useful information from the large data sets and the com-
plexity of the spectra remains.

The pixels of a digital colour image comprise a combination
of primary colours. An RGB image will thus have red, green and
blue channels (Fig. 3). A greyscale image has just one channel.
An NIR hyperspectral image, obtained when NIR spectroscopy
is combined with greyscale digital imaging, comprises single
channel images. Each of these greyscale images represents an
individual wavelength, and is stacked consecutively to form a
hyperspectral image. NIR hyperspectral images are acquired at
wavelengths in the NIR region.15 The collected image data is
arranged into a three-way data matrix (or hypercube). The first
two axes (x and y) of the matrix are the vertical and horizontal
pixel coordinates (spatial dimension), while the third (z) axis
represents the spectral dimension (wavelengths). The obtained
hypercube with its spatial and wavelength dimensions contains
an NIR spectrum for each pixel in the image (Fig. 4). Each pixel
within an NIR hyperspectral image thus represents a single spec-
trum, in principle different to its neighbour. Due to the added
spatial dimension, spectral (chemical or physical) information is
obtained for each pixel in the image. NIR hyperspectral imaging
is therefore highly suitable for analysis of samples of hetero-
geneous nature. From a hyperspectral image, the distribution
of constituents (that absorb in the NIR wavelength region),

as reflected in the spectra at each pixel, within a sample can be
determined and visualised.

Hyperspectral images can be acquired using either of two
configurations,15 i.e. the staring imager and the pushbroom or
linescan system. With the staring imager, whole images are
acquired consecutively, one wavelength at a time using either a
liquid crystal tunable filter (LCTF) or an acousto-optic tunable
filter (AOTF). A disadvantage, though, is that, during the time
required to record the wavelengths one by one, changes in the
sample can take place. Collecting images with the staring
imager takes a few minutes, the samples must be stationary
and although high spatial resolution is possible, the images will
have a lower spectral resolution. With the linescan or pushbroom
system, all spectral information is acquired simultaneously. This
is done line by line and requires the sample to move relative to
the instrument. Linescan images provide a good compromise
between spatial and spectral resolution and an image can be
collected within a few seconds. Lately most systems use the
much faster pushbroom configuration that simulates movement
of samples along a conveyor belt. The pushbroom configuration
is thus ideally suited for on-line quality control. It is also possible
to collect images point by point (whiskbroom imager) which
results in high spectral but low spatial resolution. These systems
are, however, not suitable for real-time analysis as it takes more
than an hour to collect an image. As for NIR spectroscopy, good
imaging practices should be followed as suitably reviewed by
Boldrini et al.22

It is possible to obtain useful information from the image even
before any data analysis is applied. Apart from the differences or
similarities between spectra at each pixel, differences between
image planes at respective wavelengths (Fig. 4) can also be
determined. This enables visualisation of chemical (or physical)

Fig. 3 A colour digital image with a greyscale image (top), consisting of only
one channel. A colour image is a combination of the primary colours: three
channels in red, green and blue creating an illusion of colour (bottom).

Fig. 4 Illustration of an NIR hyperspectral imaging hypercube comprising
wavelength (z) and spatial (x and y) dimensions. The spectrum of each pixel
can be visualised as well as the image plane at each respective wavelength.
Image planes are shown at a few selected wavelengths. This image was
acquired from a slice of fresh bread with the broad moisture absorption
bands clear in the spectrum of one of the pixels and the variation due to
moisture illustrated in the image plane at ca. 1450 and 1940 nm. Different
colours indicate different chemical absorptions or components.
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information and potential identification of the chemical com-
ponent of interest. Fig. 5 shows image planes (of the hypercube)
at selected wavelengths for the same slice of bread than that in
Fig. 4 after it has been dried for one hour at 60 1C. The loss of
moisture can clearly be seen in the image planes at ca. 1450 and
1940 nm when compared to the same image planes in Fig. 4. Fig. 6
shows average spectra of the images of the slice of bread before and
after drying illustrating the reduced absorption at the respective
moisture bands (1440 to 1470 nm and 1920 to 1940 nm).

Multivariate data analysis

NIR spectroscopy data is multivariate in nature due to a large
number of data points (one at each wavelength) being collected
for each sample during spectral collection. NIR data analysis is
also complicated by the overlapping peaks. Apart from chemical

information, physical properties are also reflected in the spectra.
Differences between samples result in only small spectral differ-
ences. Multivariate data analysis or chemometrics is thus required
to extract suitable information from the spectra that would
correlate with the measured property (e.g. protein, fat, moisture)
under investigation. Mathematical procedures are used to remove
unwanted information (such as spectral noise or effect of particle
size) without losing important or required information. During
the development of NIR models independent variables (measured
absorbance values at all wavelengths) i.e. the X-matrix are corre-
lated with the Y-matrix (concentration values of samples needed
to be predicted in future). Thus due to the complexity of NIR
spectra and little spectral differences between different samples,
multivariate data analysis (spectral pre-processing followed by
model development) is essential for effective use of NIR spectro-
scopy as an analysis technique.

Spectral pre-processing

Pre-processing or pre-treatment of spectral data are often
required to reduce noise or unwanted background information
and increases the signal from the chemical information.23 The
noise levels detected by the instrument thus have to be kept to a
minimum to compensate for this lower sensitivity and to ensure a
high S/N ratio. Noise can be introduced during sample preparation
and presentation, conditions under which the spectra are collected
and by instrument drift during scanning. The weakly absorbing
bands of NIR spectroscopy are much more significantly affected
than those regions that produce strong absorptions. Conditions of
spectral collection should thus be carefully controlled. A common
practice to remove noise is to collect and average multiple scans.
To reduce the noise levels significantly usually requires 64 or
more repeated scans. If not adequate, smoothing techniques
may be used.

The application of spectral pre-processing methods improve
the subsequent data analysis (exploratory analysis, calibration
and classification model development) and may be scatter correc-
tion methods that also adjust baseline shifts and derivatives.23

Derivatives always apply a smoothing step before calculating
the derivative. The most common pre-processing methods, as
reviewed by Rinnan et al.,23 include the moving-average method
(Savitzky–Golay), normalisation, derivatives (Savitzky–Golay),
multiplicative scatter correction (MSC) and standard normal
variate (SNV).21 MSC and SNV are two methods well known for
their ability to correct for spectral distortions due to multi-
plicative scattering,23 commonly noticed when samples consist
of particles differing in size. Different particle sizes cause
scattering which results in additive variation of the spectra
baseline intensity (baseline slope) as the wavelengths increase.
Derivatives (such as Savitzky–Golay) can also correct for this.23

In addition, derivatives could also solve the most common
problem of NIR spectroscopy, i.e. overlapping peaks.

Mean centring of spectra is a pre-processing technique mostly
used with principal component analysis (PCA).21 It entails
the calculation of the average spectrum of the data set with
subsequent subtraction of this average from each spectrum.
Another benefit of mean centring is that it reduces the number

Fig. 5 The NIR hyperspectral imaging hypercube from the same slice of
bread as in Fig. 4, but after it has been dried for 1 h at 60 1C. The decrease
in absorption at the moisture bands can be seen in the spectrum of one of
the pixels when compared to that in Fig. 4 (see also Fig. 6). Similarly the
reduced variation due to moisture is clear in the image planes at ca. 1450
and 1940 nm. Different colours indicate different chemical absorptions
or components.

Fig. 6 Average spectra of small areas of the image of the slice of bread (a)
fresh and (b) after being dried for 1 h at 60 1C, illustrating reduced absorption
at the respective moisture bands (1440 to 1470 nm and 1920 to 1940 nm).
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of variables to be used; the final model then becomes much less
complex. PCA is an explorative data analysis technique usually
employed to view data for inconsistencies and outliers before
regression techniques are applied.

The selection of the most appropriate spectral pre-processing
and regression methods is usually done through trial and error.
Calibration and prediction statistics are evaluated to select
the most accurate calibration model with an optimum number
of components.

Exploratory NIR spectroscopy data analysis

Unsupervised methods, e.g. PCA, are mostly used as investigative
tools in the early stages of data analysis to determine possible
relationships between samples. PCA is used to describe the
majority of the variation in multivariate data sets. It compresses
the data by constructing new variables. Scatter plots of e.g. the
first two new variables can be used to visualise the relationship
between samples in the multivariate space.24 PCA is applied to
spectral data only and no prior knowledge on the chemical
composition of the sample is required. Investigating the PCA
scores plots, samples deviating from others, either due to
concentration (mistakes when performing reference method or
copying data) or spectral (samples belonging to a different
population or instrument not functioning properly) differences
can e.g. be identified for further investigation.

Quantitative NIR spectroscopy multivariate data analysis

The application of NIR spectroscopy as an analytical technique
would not be possible without the use of multivariate data
analysis (chemometrics). Chemometrics is firstly used to resolve
overlapping peaks bands and broad spectral bands in NIR
spectra. This enables the technique to be used for quantitative
measurement after appropriate and reliable calibration models
have been developed.20 Fig. 1 illustrates typical broad bands
found in NIR spectra of ground and intact whole wheat. NIR
absorption bands occurring at longer wavelengths are usually
better resolved than absorption bands at the shorter wavelengths.
Overlapping peaks in an NIR spectrum limits the use of only a
single wavelength. Using all spectral variables (wavelengths) will
result in improved models, but it requires multivariate regression
techniques such as principal component regression (PCR) or
partial least squares (PLS) regression. These two regression
methods are based on the principle that only a few linear
components (combinations) within the spectral data can be used
in the regression equation. These components are determined
using appropriate mathematical calculations. In this way only the
most relevant information from the spectral data set is used for
the regression or calibration model development.

The need for calibration model development means that
NIR spectroscopy is a secondary method and that the accuracy
of the method depends to a large extent on the accuracy and
repeatability of the reference method. The first step in quantita-
tive NIR calibration model development thus involves acquiring
a set of calibration or training samples with known reference
values (chemical constituents, physical characteristics or other
indirect properties) covering the range of variation expected in

unknown samples to be analysed in future.20 To develop a calibra-
tion model, a mathematical relationship must be established
between the NIR spectra and the respective reference values
previously determined by an independent analytical method for
each sample. This can be done on either raw or pre-processed
spectra. Unless scattering properties are contributing to the
property measured, pre-processed spectral data are most
commonly used.

The property to be measured during NIR calibration model
development should be either of organic nature (e.g. moisture
or protein that will absorb in the NIR region through direct
measurement), be correlated with a physical characteristic
(e.g. particle size), or it should be a compound that does not absorb
in the NIR region but can be measured through co-variation or
in other words indirect measurement (e.g. salt content). The
aim of model development is to fit the NIR spectral data and
reference values to a straight line and to compare it statistically
to a theoretically perfect line through the origin at 451 to both
axes.20 This calibration model, after being adequately validated
on an independent validation set, can then be used to predict
the properties or constituents in unknown samples on the basis
of their NIR spectra. Regression methods commonly used are
multiple linear regression (MLR), which utilises only selected
wavelengths, PCR and PLS regression. MLR is the easiest way to
perform an inverse multivariate calibration based on least
square fitting of the reference to the spectral data. Although
it is usually applied when only a limited number of discrete
wavelengths are available, it can also be applied to full spectrum
data sets. It is most often applied according to the stepwise
forward method where the first wavelength to be selected will
be the one with the highest correlation. The regression then
finds the next wavelength, which will increase the correlation
(e.g. coefficient of determination (R2)) and reduce the error
(e.g. standard error of prediction (SEP)). The process stops
when addition of another wavelength has no effect or starts
to reduce the correlation and increase the error. PCR or PLS
regression both use the whole spectrum to calculate linear
combinations (components) for regression modeling. More
detail on the principles of these methods can be found in
Osborne et al.20 and Næs et al.24

During development of multivariate calibrations, a crucial
aspect to consider is the correct selection of calibration and
validation samples.21,25 Validation samples should have no
influence on the calibration procedure or selection of best
calibration model; it should thus not be used to select the
optimum number of components. Validation sets should be
collected from experiments different to that of the calibration
set. E.g. it should be agricultural samples from a new harvest
season or chemical samples from a new batch. If a validation
set is not selected to be completely independent, the predictive
performance of a calibration, validated in this manner, is likely
to be overestimated, as could be the case when using cross-
validation. During cross-validation a single sample or groups of
samples are consecutively removed from the calibration set and
used as validation samples during a number of prediction
iterations and the standard error of cross-validation (SECV) or
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root mean standard error of cross-validation (RMSECV; corrected
for bias) reported. For efficient validation of a calibration model,
an entirely independent validation set should be used.25 Finally,
an important aspect when developing NIR calibration models, is
the correct reporting of calibration and prediction statistics for
efficient interpretation of the repeatability and accuracy of the
developed calibration model.25 Prediction statistics that are
important to report include standard error of prediction (SEP)
or root mean standard error of prediction (RMSEP; corrected for
bias) and coefficient of determination (R2). For interpretation of
accuracy of prediction models it is also advisable to consider the
standard error of laboratory (SEL) as indication of reproducibility
of the reference method. The RPD which is the ratio of
the standard error in prediction to the standard deviation (of
the validation samples) is also advisable to use to illustrate
suitability of prediction models. It attempts to scale the error
in prediction with the standard deviation of the property. RPD
values greater than 3 are useful for screening, values greater than
5 can be used for quality control, and values greater than 8 for
any application.

Reasons have been identified that could result in decreased
accuracy of NIR calibration models.34 (1) A narrow range in the
variability of the reference values (i.e. low SD) is known to
impact negatively on NIR predictability. In a quality control
environment, it is difficult to obtain samples with a wide range
of variability and this problem is thus not easy to solve. (2)
Analytical differences exist when using e.g. the Kjeldahl method
to measure nitrogen content. This could affect crude protein
predictions. Similarly, if there are large errors or if poor
reproducibility is observed for the reference method it would
reduce NIR prediction accuracy. (3) If NIR spectra are collected
from intact samples (preferred for commercial on-line measure-
ment) it could result in reduced accuracy due to the heterogeneity
of the samples. Although not ideal, chemical composition can be
predicted more accurately on homogeneously milled or minced
than on intact samples and even more so if a finer sieve size or
grind is used. (4) Determination of minerals remains a challenge.
Similar to salt (NaCl), pure minerals or inorganic compounds do
not absorb in the NIR region. Measurement of e.g. ash content is
thus possible due to associations of the mineral content with the
organic fraction of the sample or by forming salts that modify the
spectra, most likely the water bands.

Qualitative NIR spectroscopy multivariate data analysis

Qualitative analysis by NIR spectroscopy is usually required to
discriminate between different classes of a commodity (e.g. a
given food ingredient), confirm the authenticity of another
(e.g. a pure olive oil) or detect an adulterated food.26 Solving
these type of problems requires the comparison of the authentic
material with the unknown sample. Using NIR spectroscopy
involves the collection of typical NIR spectral signatures of the
commodity (often a food) under investigation. Due to variation in
biological materials, one typical spectrum does not exist for each
class.26 Variation is caused by different varieties, geographical
area and seasons. A library of representative spectra (ideally
containing all possible variation) thus needs to be collected

to be compared with the spectrum of the unknown sample. The
application of NIR spectroscopy for the confirmation of authen-
ticity of foods and food ingredients and discrimination
between different classes of foods has been appropriately
reviewed by Downey26 and Manley et al.27

Qualitative multivariate data analysis techniques or pattern
recognition methods, compare NIR spectra and search for
similarities or differences within the spectra.23,26 The aim is
to develop classification models that would give as many
correct classifications as possible. The first step is always to
determine the number of classes to be considered and the
specific requirements that a sample has to fulfil in order to be
assigned to a certain class.

Two different approaches can be used during qualitative
applications of NIR spectroscopy, i.e. unsupervised and super-
vised.27 When using supervised methods, the classes of the
sample set used for classification model development (i.e. the
training set) are known beforehand whereas, in unsupervised
methods, there is no information available about the class
structure. Unsupervised methods, e.g. PCA, are mostly used as
investigative tools in the early stages of data analysis to deter-
mine possible relationships between samples. Supervised
methods commonly used are soft independent modelling of
class analogy (SIMCA), linear discriminant analysis (LDA),
multiple discriminant analysis (MDA), factorial discriminant
analysis (FDA), PLS discriminant analysis (PLS-DA), canonical
variate analysis (CVA), artificial neural networks (ANNs) and k-
nearest neighbour (k-NN) analysis. These methods, as applic-
able for authentication studies, have been summarised by
Manley et al.27 Detailed explanations of these and other quali-
tative (classification) techniques such as support vector
machine (SVM) classification can be found in Næs et al.24

Multivariate image analysis

A single hyperspectral image can consist of up to 200 000
spectra. Multivariate image analysis (MIA) techniques are
required to handle such large data sets.28 The input data for
MIA is usually a hypercube, but it can also be a mosaic (number
of combined hypercubes).28 Once a hypercube has been
selected or a mosaic constructed, a number of MIA techniques
may be applied. These techniques are usually applied in a
specific sequence and repeated a number of times, with
changes in e.g. pre-processing techniques, until the optimum
regression or classification model has been developed. The
image analysis sequence usually starts with cleaning of the
image, which involves removal of unwanted background and
correction of shading effects. This is followed by exploratory
analysis (e.g. PCA) before regression (e.g. PLS) or classification
(e.g. PLS-DA) models are developed. Because of the huge
amount of available data, model development results can
successfully be visualised by means of plots (e.g. PCA scores
plots) and images (e.g. PCA scores images or PLS-DA classifica-
tion images). If nonlinear regression modelling needs to be
addressed, artificial neural networks (ANN) may be considered.
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Quantitative NIR multivariate image analysis

MIA may be applied to raw images or pre-processed images.
Pre-processing techniques are used to reduce noise (thus
increase S/N ratio) and to remove any irrelevant information.
These pre-processing methods have been described earlier23

and were reviewed in more detail for imaging applications by
Nicolaı̈ et al.29 Images always contain errors which should be
efficiently removed before MIA is applied. Errors may be due to
shape of the sample, causing shading effects, camera and
optical related errors, with dead pixels present in the detector
and background, all of which are unrelated to the property
of interest for which a model needs to be developed. It is thus
essential to spend adequate time to remove these errors
and unwanted information (including background) before any
modelling is started. Background can be removed by identifying
a threshold after the subtraction of the low reflectance image
value from that of the high reflectance image. PCA scores plots
(the background and other effects such as shading would form
clusters in the scores plot) and scores images can also be used
interactively by means of brushing.28 By selecting the clusters in
the scores plot the associated scores would be highlighted in the
scores images, enabling visual confirmation of the cluster to be
removed e.g. background. This data (spectra at respective pixels)
can then be removed from the data set.

The same principles as for NIR spectroscopy are employed
when the regression techniques MLR, PCR and PLS are
applied to hyperspectral images.28,29 However, in contrast to
NIR spectroscopy, the number of samples (or spectra) used for
image regression models is much larger (ca. 200 000) than the
number of variables (ca. 240). In the case of NIR spectroscopy
these two are almost the same (ca. 200). The large number of
available spectra enables representative selection of calibration
(training) and validation (test) sets. The main advantage of
images is that all samples (spectra) have spatial coordinates.28

This makes construction of classification and prediction images
possible. These images can be visually inspected and inter-
preted. A disadvantage of multivariate image regression,
though, is that in principle, the reference values for all the
calibration samples (thus each spectrum at every pixel) should
be known. Determination of these values at each pixel position
in an image, using traditional methods (wet chemistry) is not
feasible. An average reference value (obtained from the whole
imaged sample) is usually used. This limitation needs to be
considered when NIR hyperspectral imaging is used for quan-
titative measurement and improved methods might need to be
developed in future.

The success of MIA depends mostly on the quality of the
spectral data, image cleaning and data pre-processing. Due to
the vast amount of data available, the assessment of regression
models or prediction results can be visualised as histograms
and concentrations or heat maps (graphical representation
of data as colours).28 MIA thus provides a powerful tool for
increasing the evaluation and understanding of sample consti-
tuent concentrations and their distribution or spatial variation
throughout the sample matrix.

Qualitative NIR multivariate image analysis

Due to the added spatial dimension and its applicability to
heterogeneous samples, NIR hyperspectral imaging is most
suitable for authentication, discrimination and classification
applications. Qualitative modelling requires discrimination
between two classes of samples (or groups/clusters of pixels
in the case of images).28 PLS may be applied as a discriminative
technique for qualitative modelling, i.e. PLS discriminate analysis
(PLS-DA).27 The difference between the two techniques is that
the wet chemistry reference values are replaced with dummy
variables, e.g. �1 and +1, each referring to either of the two
classes (selected groups of pixels). This is a supervised clustering
method, because it is known in advance which pixels are�1 and
which are +1. When using�1 and +1 as dummy variables, 0 may
be chosen as a cut-off for class membership. It is essential to use
a completely independent test set to evaluate the prediction
ability of the classification model.

Clusters can also be obtained with PCA, an unsupervised
method, using distances between the samples (pixels) in the
multivariate space. PCA is well suited for hyperspectral images
as it can handle many spectra (pixels) at a time and can also be
used for classification.28 The benefit of applying PCA, which is
also a data reduction technique, is that it reduces the data set
comprising 100 000s spectra to a smaller number of latent
variables for further usage and/or interpretation. Classification
results can be visualised as principal component (PC) scores
images, PC scores plots, classification plots and classification
images. Fig. 7 illustrates how multivariate image analysis enables
visualisation of results. The PC scores image enables visualisa-
tion of similarity in samples by means of a heat map. In this
case similar colours refer to similar score values which can be
interpreted as characteristics, e.g. similar chemical composi-
tion. This allows one to distinguish between, in this case, hard
(H) and soft (S) maize kernels. The PC scores plot shows
clusters illustrating similarity between spectra (pixels) based
on distances in the multivariate space. These clusters can be
assigned dummy variables and can be shown as a classification
plot and subsequently be projected onto the scores image to
form a classification image. In this case, the clusters in the PCA
scores plot obtained were due to differences in endosperm
texture of whole maize kernels. Relevant information in imaging
data is often only being observed in lower-order principal compo-
nents and not in e.g. principal component one. It is thus important
to evaluate these components also.

Successful implementation of NIR calibrations, whether
quantitative or qualitative, requires robust calibration models, large
datasets including inherent variation, availability of powerful com-
puters, optimised spectral pre-processing methods and suitable
regression techniques, such as PLS.20,24 Variation included in data
sets could comprise e.g. several geographical areas, varying climatic
conditions, seasons and scanning conditions, such as temperature
of the sample when collecting the spectra. Another crucial
aspect, not considered often enough in any NIR application is
that protocols must be put in place to enable and ensure regular
maintenance and updates of calibration models. More research
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should also be performed to understand calibration techniques
in terms of the physics of NIR light propagation in the sample
better.29

Fields of application

The use of shorter wavelengths in the NIR region results in
increased penetration depth, compared to other vibrational
spectroscopic techniques. This enables direct analysis of solid
samples, requiring little to no sample preparation. This,
together with the advantages of being chemical-free, rapid,
non-destructive and non-invasive made it possible to move
NIR spectrophotometers out of the laboratory to the production
environment to be used at-line, on-line or in-line for quality
control purposes. The recent advancement in instrument develop-
ment now also enables in-field and on-site analysis with the
availability of portable and, more recently, also miniature instru-
mentation.30 In principle, NIR spectroscopy applications should
only include prediction of properties of organic nature of which

the molecular bonds absorb in the NIR region, i.e. direct
measurements. A number of applications, however, illustrate
that calibration models can also be developed for prediction
of physical characteristics of samples. This could include,
e.g. measurement of properties related to particle size, which
enables prediction based on different scattering properties
of particles differing in size. Similarly, components with mole-
cular bonds that do not absorb in the NIR region can be
measured with NIR spectroscopy. This is possible through
co-variation of the non-organic component with an organic
component in the sample, i.e. indirect measurement. The earliest
report of a calibration model based on indirect measurement is
that of Hirschfeld31 who showed that it is possible to measure the
concentration of salt (NaCl) dissolved in water. Sodium has no
unique NIR absorption band but, because the water bands shift
along the wavelength axis proportional to the salt concentration,
prediction is possible.

Most applications referred to in this tutorial review are based
on direct measurement predictions. NIR spectroscopy applica-
tions within food and agriculture still dominate with applications

Fig. 7 (a) Scores images of PC2 and PC5 for whole yellow maize kernels enabling visualisation of similarity in chemical composition (similar colours indicate
similar chemical composition, in this case similar endosperm texture). (b) Scores plot of PC2 vs. PC5 with three clusters. (c) Classification plot based on
clusters identified in the PC scores plot. (d) Classification image after projection of the classes identified in the scores plot onto the scores image.
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in food safety foremost in recent NIR hyperspectral applications.
A brief review of some non-food applications is also included
(e.g. wood and wood products, soil, medical applications and
pharmaceuticals). This tutorial review will be concluded with
detection of food adulteration and aquaphotomics.

Food and agricultural products

The most prominent commercial application of NIR spectro-
scopy remains in the areas of agricultural raw materials, food
ingredients and finished food products. This included a wide
range of commodities, i.e. meat, fruit and vegetables, dairy,
cereals, beverages and tea.5 More recent applications considered
commodities not often investigated in earlier years, e.g. cocoa
beans, pistachio nuts, hazelnut kernels, honey and transgenic
foods (a concern for many consumers).32 Investigations in the
use of NIR spectroscopy on olives and olive oil remained a
prominent and popular topic of investigation throughout the
years. Typical SEP and RPD (quantitative) and correct classifica-
tion (qualitative) values will be reported in the sections below for
the respective applications.

Since 1998, most NIR hyperspectral imaging applications and
thus also review papers mainly focussed on food quality detection.
Commodities considered included wheat (e.g. preharvest germina-
tion) and maize (e.g. moisture and oil content), apples (e.g. bitter pit
and bruise detection) and other fruit (e.g. peach, strawberry),
cucumber (e.g. chilling injury), beef (tenderness), pork (marbling),
and fish fillets (fat and moisture content and detection of
nematodes and parasites).15 Feng and Sun33 advanced on
reviews covering mainly food quality, and focussed their review
on the application of NIR hyperspectral imaging to food safety
assessment. Some of the first NIR hyperspectral imaging food
safety applications since 1998 included faecal contamination
on fruit, vegetables and chicken carcasses, followed by detec-
tion of defects in fruit and vegetables and diseased chicken
carcasses, fungal contamination of cereal grains, and parasites
on or in fish.33

Meat and meat products

NIR spectroscopy applications on meat considered most often are
the prediction of chemical composition such as content of crude
protein (SEP = 0.35–1.08%; RPD = 2.62–5.13), intramuscular
fat (SEP = 0.18–1.38%; RPD = 7.92–9.17) and moisture (SEP =
0.37–1.00%; RPD = 1.87–7.21), as well as technological proper-
ties such as pH (SEP = 0.05–0.16; RPD = 1.08–1.28), colour
(SEP = 0.42–4.47; RPD = 0.90–2.16) and water-holding capacity
(WHC; SEP = 1.14–2.355; RPD = 0.81–1.27).34 NIR spectroscopy
shows good potential for meat compositional predictions
although, based on current prediction statistics, the majority
will only be suitable for screening purposes and not adequately
accurate for quality control testing (requires RPD 4 3).34 In the
late 1990s, NIR predictions of chemical composition of meat
included only intramuscular fat and moisture content.34 These
applications have since been extended to include more complex
predictions such as ash content (SEP = 0.15–0.23; RPD = 1.26–4.53)
showing good potential. Good results obtained for pH predictions
were ascribed to an adequately wide range of pH reference data,

the use of a reference method with good repeatability and acquiring
spectra from intact meat samples (in contrast to chemical composi-
tion predictions when minced meat resulted in better predictions).
As would be expected when measuring colour, adding the visible
range to the NIR range enabled improved predictions to be
obtained. Predicting water-holding capacity and associated proper-
ties such as drip loss showed limited potential.

Other applications included the prediction of a number of
sensory attributes in meat and meat products (e.g. flavour; SEP =
0.20–1.20; RPD = 0.57–1.40) together with its ability to classify meat
samples based on quality (60–100% correct classification).34

Attempting to predict sensory attributes of meat, only beef tender-
ness could be predicted with reasonable accuracy (SEP = 0.35;
RPD = 3.82).34 The lack of accurate prediction of sensory properties
was due to the heterogeneity of intact meat samples, inconsistent
sample preparation or presentation to the instrument, inaccurate
reference methods and/or the subjectivity of taste panels.

During the late 1990s and early 2000s, the first NIR hyper-
spectral imaging study on meat, i.e. faecal detection on chicken
carcasses, were reported.33 This application has been implemented
in a real-time inspection line. Meat quality measurements such as
beef tenderness prediction, only followed in the late 2000s.35

Wavelength ranges at the time included the visible region and
only up to about 1100 nm due to the lower cost of silicon-based
detectors compared to the more expensive InGaAs-based
HgCdTe-based array detectors required for wavelength ranges
from 1100 to 2500 nm. As is often the case with investigations
using a new technology, these initial studies were only feasibility
studies and they leave room for further investigations, especially
in terms of validation of the developed methods.

Fish and fish products

The most recent review on the use of NIR spectroscopy and NIR
hyperspectral imaging, to study fish and fish products, came
from the research group of Sun.36 NIR spectroscopy has mainly
been used to determine chemical composition, i.e. moisture
(R2 = 0.94–0.98; RMSEP/SECV = 0.27%), fat (R2 = 0.90; RMSEP/
SECV = 0.14–0.67%) and free fatty acids (R2 = 0.96; SECV = 0.59%)
of fish. Because fish is highly perishable, microbial spoilage has
been considered using both NIR spectroscopy and NIR hyper-
spectral imaging.36 Nematodes could be detected in cod fillets at a
detection rate of 58%. The availability of portable and miniature
NIR spectroscopy instruments can play a vital role in terms of
on-site quality and safety analyses.30 As was observed for meat,
NIR spectroscopy also has limited potential for prediction of sensory
properties due to heterogeneity of the fish samples and unavoidable
subjectivity of the reference method (taste panel).

Milk and milk products

Milk, globally an important nutrition source, is mainly consumed
in liquid form. Since MIR spectroscopy is widely used for rapid
measurement during processing, NIR spectroscopy has been
investigated as a complementary method and also for on-site
(on-farm) applications due to ease of application.37 The dairy
industry has been using NIR spectroscopy as a routine analysis
for over 30 years, with the first applications on milk powders.37
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NIR technology has traditionally only been used to measure low
moisture products. Today, more complex and non-homogeneous
products such as cheese, yoghurt and many more, covering almost
the entire range of dairy products, are being evaluated for a range
of characteristics.37 Applications on cheese included chemical
composition such as dry matter (SEP = 15.4%; RPD = 6.0), fat
(SEP = 14.9%; RPD = 3.2) and sodium chloride (SEP = 1.76%;
RPD = 2.9). Using perturbations of the water signal in the case of
cheese, sodium chloride is routinely predicted with NIR spectro-
scopy and commercial calibrations are readily available.

The capacity of NIR spectroscopy to predict sensory attributes
of cheese such as visual evaluation (presence of holes, SEP = 0.4;
RPD = 2.4); texture measurements (hardness, SEP = 0.1; RPD =
3.3; chewiness, SEP = 0.2; RPD = 2.7; creamy, SEP = 0.4; RPD =
1.6); taste (salty, SEP = 0.3; RPD = 1.6; buttery flavour, SEP = 0.3;
RPD = 2.1; rancid flavour, SEP = 0.3; RPD = 2.3) and sensations
such as pungency (SEP = 0.3; RPD = 2.6) and retronasal
sensation (SEP = 0.2; RPD = 2.6) were illustrated by the research
group of González-Martı́n.38 It is especially this qualitative type
of calibration development that has progressed significantly in
recent years.37 A more recent paper by González-Martı́n et al.39

illustrated the good potential of NIR spectroscopy to predict
volatile compounds in milk, i.e. 2-nonanone (SEP = 0.087; RPD =
3.4), acetaldehyde (SEP = 0.041; RPD = 2.3), ethanol (SEP = 3.89;
RPD = 2.8), 2-heptanone (SEP = 0.17; RPD = 2.8), 2-butanol (SEP =
1.20; RPD = 2.1) and 2-pentanone (SEP = 0.41; RPD = 2.0).

Milk is a challenging matrix to study, since it is a turbid
opaque liquid and highly scattering due to the presence of milk
fat globules and casein micelles in suspension. It is, however,
possible to separate the effects of scatter and absorption.37

Based on the theory and fundamental principles of scatter,
scientists might be able to use the proposed strategy to describe
the chemical and physical properties of milk as well as other
highly scattering materials better.

What remains to be addressed to improve the effective use of
NIR spectroscopy on dairy products are:37 (1) whether either
reflectance or transmission spectroscopy should be used; (2) an
optimum wavelength range to be used for dairy analysis; (3)
careful consideration of sample selection and preparation
for calibration development purposes; and (4) optimum pre-
processing techniques to deal with particle size distribution
variation between samples (such as milk powders).

The availability of only a few reports on the use of NIR hyper-
spectral imaging in dairy products is potentially due to the homo-
geneity of the liquid and powdered milk samples and the difficulty
to analyse cheese due to the heat generated by the light source and
longer acquisition time (up to a few minutes) of earlier systems.15

With pushbroom imaging systems (which acquire images within
a few seconds) more readily available, the analysis of cheese
products should increase.

Fruit and vegetables

The very early applications in horticulture focussed on dry matter
content of onions, soluble solids content (SSC) of apples and
water in mushrooms.29 SSC continued to be evaluated (mostly
on apples, RMSEP = 0.3–1.6%) with little reported on vegetables.

This is expected with sweetness (measured as Brix) not as
important for vegetables as for fruit. When the water bands
in NIR spectra dominate, as in fruit, the concentration of acids
is much lower than that of sugars.29 Indirect measurement of
acidity was shown to be possible due to its correlation with
sugars, however, it was more difficult to predict (R2 = 0.65;
SEP = 0.15%). Similarly, it was possible to measure fruit maturity
due to co-variation with sugar content and microstructure of the
tissue. The penetration of NIR light into and scattering within
fruit and vegetable tissue are affected by the latter.29 This also
makes it possible to measure properties such as stiffness, inter-
nal damage as well as sensory attributes. Sorting of fruit based on
quality attributes and not only on external appearance, has
become a reality due to the availability of NIR spectrophoto-
meters.29 The short analysis time (seconds) required by diode
array instruments also enables on-line sorting of fruit based on
quality properties. In spite of NIR spectroscopy being an economical
technique (once implemented), it will be costly to replace current
systems (based on visual external appearance evaluation of fruit and
vegetables). It will thus only become feasibly to implement NIR
spectroscopy on-line once consumers are willing to pay higher prices
for fruit being e.g. extra sweet.29

In a more recent study, the gross energy of food grade legumes
were predicted (SEP = 0.025 kcal g�1; RPD = 4.2).40 The standard
error was very low compared to that of the reference method
(0.204 kcal g�1), i.e. the adiabatic bomb calorimeter.

Numerous NIR hyperspectral imaging investigations have
been executed on fruit and vegetables during the last decade.15,29

Due to the penetration depth required, most of the applications
were performed in the shorter wavelength ranges of the NIR
region (up to 1000 nm); often also including the visible range.
This may be ascribed to affordable imaging instrumentation
available at the time, which only operates in the shorter
wavelengths region. Quality aspects important for fresh fruit
and vegetables include measurement of firmness and SSC with
detection of early bruising and chilling injury also being
important.15,29 One of the most significant benefits of NIR
hyperspectral imaging is that defects such as bruising can be
detected and visualised in principal component images or
classification plots before they are actually visible on the fruit itself.
This enables the opportunity to prevent fruit and vegetable with
potentially short shelf-life to enter the supply chain. Safety aspects
were addressed by means of detection of faecal contamination
on fruit and vegetables (although mostly on apples) and received
significant attention since the early 2000s.33

Cereals and cereal products

Since the first application of NIR spectroscopy in the early
1970s, it continued to be researched and applied in this field.
Apart from compositional analysis, more complex applications are
now being investigated, including analysis in breeding develop-
ment and genetics, detection of adulteration and presence of weeds
and insects in wheat and flour.5 In a novel approach, reviewed by
Woodcock et al.,5 endosperm genes and gene combinations of
barley mutants was classified. This allowed the interpretation of
physico-chemical and genetic significance of the developed models.
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Another unique application investigated changes in dough
development during mixing non-invasively.5 This was done by
integrating the second derivative curves of the spectra under
the peak at 1125 to 1180 nm. The optimum NIR mixing time
was subsequently determined from the curves after plotting
the measured areas against mixing time determined earlier.
High correlations were found between measurements derived
from NIR mixing curves and the measured dough properties
when doughs were prepared from flour milled from single
variety wheats.5

When using NIR hyperspectral imaging to analyse whole
cereal grains, a significant advantage is that, although a number
of grains can be imaged simultaneously, prediction results from
single kernels are obtained. Single kernel analyses with NIR
spectroscopy are time-consuming and can be complicated due to
the difference in kernel size and alignment when presenting it to
the instrument. Elmasry et al.15 reviewed cereal applications
covering both quality and safety aspects. The heterogeneous
nature of cereal grains, both within and between kernels,
makes it highly suitable for image analysis. Both quantitative
(e.g. moisture, oil and oleic content in maize) and qualitative
(e.g. classification of wheat classes based on quality, and maize
based on kernel hardness) analyses have been performed. Detec-
tion of fungal infection in maize has also been considered.

Wine

The majority of NIR wine applications focus on measurement
of wine properties such as alcohol content, sensory and
aromatic attributes and fermentation.5 It was illustrated that
NIR calibration models performed better than those developed
with spectra collected in the MIR region. The high S/N ratio
was given as the main reason for the superior coefficient of
determination values of the NIR predictions. An earlier review
by Cozzolino et al.41 included the measurement of grape
composition with NIR spectroscopy reporting typical prediction
errors for total soluble solids (TSS) (SEP = 1.04–2.961 Brix;
RPD = 1.33–4.0), total anthocyanins (SEP = 0.05–0.06 mg g�1;
RPD = 3.8–4.2), acidity (SEP = 1.28 g L�1), and pH (SEP = 0.045–
0.11; RPD = 2.2–2.8). Wine composition included alcoholic degree
(SEP = 0.24%; RPD = 5.7), total acidity (SEP = 0.48 meq L�1; RPD =
2.27), pH (SEP = 0.07; RPD = 2.4), glycerol (SEP = 0.72 g L�1; RPD =
4.0), reducing sugars (SEP = 0.33 g L�1; RPD = 10.3) and total
sulphur dioxide (SEP = 23.5 mg L�1; RPD = 1.8). The authors
reported the suitability of vis-NIR spectroscopy to predict wine
quality as judged by both commercial wine quality rankings
and wine show scores. Better results were obtained from the
commercial wine quality rankings rather than from the sensory
data (R2 = 0.84; SECV = 0.97). Some sensory properties (estery,
honey, toasty, caramel, perfumed floral and lemon) correlated
to some extent (R2 = 0.5), while others were not as successful
(passion fruit, sweetness and overall flavour; R2 = 0.30).41 The
study was, however, performed on a limited set of only 40
samples. Although ideally larger samples sets should be used,
using a limited set is understandable due to the high cost of
performing sensory analysis.

The use of NIR spectroscopy has also great potential to
follow the red wine fermentation process by means of ethanol
(SEC = 0.15%) and sugar (SEC = 2.6 g L�1) contents.41 A problem
identified when monitoring wine fermentation was the change
in the sample matrix during the course of fermentation and
subsequent analysis.

A need identified,41 as for many other applications, is the
availability of inexpensive portable hand-held instruments,
especially for the measurement of the compositional quality
of grapes while still on the vine. This has since become a reality
with the development of not only portable but especially low-cost
miniature instruments.30 More investigations using miniature
instruments are foreseen in the near future.

Beer

A good quality beer depends on good quality raw materials and
continuous information for process control.42 NIR spectroscopy
is ideal for characterisation of the raw materials (barley malt,
hop and yeast) and could be applied during process control, to
analyse intermediate products and finally the finished product.
Most NIR spectroscopy applications till now focussed on deter-
mination of barley properties to select the best varieties for
producing high-quality malt for high-quality beer production.42

Studies considered included genotype classification, mycotoxin
detection (R2 = 0.993; SEP = 3.097 ppb) and quantitative analysis
of intact and ground grain for moisture (R2 = 0.87–0.99; SEP =
0.12–0.97%), protein (R2 = 0.71–0.99; SEP = 0.09–0.64%) and
B-glucan (R2 = 0.59–0.79; SEP = 0.15–1.33%), properties that are
also important for production of good quality beer. Analysis of
intermediate products mostly entails quantitative analysis of
wort and in particular extract (R2 = 0.76–0.88; SEP = 1.00–2.29%)
and free amino nitrogen (FAN) (R2 = 0.51–0.74; SEP = 17 mg L�1).
Analysis of the beer includes determination of real extract (SEP =
0.075–0.28% w/w) and ethanol (SEP/RMSEP = 0.07–0.14%). The
majority of these studies were performed on laboratory scale and
not in a commercial environment.41 Process analytical technol-
ogy (PAT), developing at a fast pace, is playing an ever increasing
role in product–process optimisation strategies.41 There is thus
scope for more in-line applications to be considered.

Non-food near-infrared spectroscopy
applications
Wood and wood products

NIR spectroscopy on wood and wood products has been actively
researched during the last 20 years, determining chemical
composition, physico-chemical and mechanical properties.43

The first reported use of NIR spectroscopy on wood pulps was
prediction of lignin content, followed by pulp yield and cellulose
content of wood measurements.43 Although NIR spectroscopy is
used in the assessment of breeding trial samples, it is still not
widely implemented for wood characterisation in commercial
environments. This is potentially due to no premium being paid
for high-quality wood; quality analyses are thus not essential.
Limited use could also be ascribed to the capital cost involved
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in obtaining laboratory NIR systems and the need to develop,
use and maintain calibration models.44

The implementation of suitable, economical portable instru-
ments is thus required as alternatives to laboratory systems.45

Where suitably accurate NIR models is required for the com-
mercial environment, using NIR spectroscopy as a screening
tool in breeding programmes, analytical accuracy might not be
necessary and the accuracy obtained with portable systems
might be acceptable.

Schwanninger et al.,46 extensively reviewed NIR band assign-
ments for wood, and compiled detailed tables comprising band
locations in both wavenumber (cm�1) and wavelength (nm), the
component likely to absorb at this band location, the bond
vibration, as well as descriptive remarks. Knowledge of the
band locations where chemical or functional groups absorb is
indispensable for a better understanding of the underlying
chemistry behind developed multivariate calibration models.

The highly heterogeneous nature of the wood sample matrix
and the importance to know the spatial distribution of wood
properties, make wood highly suitable for NIR hyperspectral
imaging. With the spatial advantage and ability to visualise NIR
hyperspectral image analysis results, more research is required
to benefit from this advantage in terms of improved knowledge
on the overall heterogeneity of the wood sample matrices. This
could lead to a better understanding of the effect of the environ-
ment on wood structure.

Soil

Soil is a fundamental natural source for the production of
e.g. agricultural produce and food. It is known to be a complex
matrix comprising organic and inorganic mineral matter, water
and air. One of the difficulties in analysing soils is that no two
soils are the same and variations may occur over even short
distances. A substantial increase in research on the use of NIR
(or vis-NIR) spectroscopy in soil science has been observed
during the last 15–20 years.47 Applications mainly focus on
basic soil composition, texture and clay mineralogy. Attention
has also been given to nutrient availability and properties such
as fertility, structure and microbial activity. The most successful
calibrations in soils are those for total (R2 = 0.66–0.87; RMSEP =
4.2–7.9 mg g�1) and organic carbon content (R2 = 0.55–0.92;
RMSEP = 2.5–29 mg g�1) as well as clay content (R2 = 0.56–0.94;
RMSEP = 1.9–10.3%). This is due to clay minerals and soil
organic matter both being fundamental constituents of the soil
and absorb in the NIR region. Indirect measurements, such as
pH, extractable P, K, Fe, Ca, Na and Mg, were found to be highly
variable due to the co-variations to constituents that are spec-
trally active expected to be unstable.47 Pure metals do not
absorb in the NIR region, but can be detected because of
co-variation with spectrally active components and they can
also be complexed with organic matter. Co-variations upon
which indirect calibrations are built may also be very different
at different sites, making transferring calibrations geographically
difficult. Another reason could be the reference method used,
e.g. different types of P are measured by different reference
methods, which are not always well correlated.47

Spectra from field samples are not necessarily worse than
spectra from appropriate collected and well-prepared laboratory soil
samples.47 In-field or on-site measurements should be considered
more often, with no sampling or sample preparation required. There
is also a need for better handling of the variability and complexity
of soils and a better understanding of the physical basis for the
reflection of light from soils.47

Medical

NIR spectroscopy applied to in vivo medical applications dates
back to 1977 when Frans Jöbsis reported brain tissue can be
measured within the NIR range (700–1000 nm).11 This enabled
real-time, non-invasive analysis of haemoglobin oxygenation.11

The main advantages of NIR spectroscopy for medical applica-
tions are that it does not have any side-effects, can be used in
real-time and that it is cost-effective and portable. Currently,
the main NIR spectroscopy and NIR hyperspectral imaging
applications include pulse oximetry, brain/muscle oximetry,
functional brain cortex mapping and optical mammography.11

Recently, thirteen papers have been published which critically
reviewed a number of medical applications of NIR spectroscopy.11

The review on the early years of medical NIR spectroscopy research
and development included an update on the status of current
commercial oximeters and relevant applications.11 Identification of
the most relevant clinical application, i.e. the evaluation of cerebral
oxygenation during adult cardiac surgery and cardiopulmonary
bypass, concluded this review. Although many commercial
oximeters are available, precision and standardisation need to
be improved. A review on the techniques and instrumentation
for medical NIR diffuse spectroscopy include the development
of optical coherence tomography, application of NIR spectro-
scopy in pre-term and new-born infants, the evolution of NIR
wireless methodology for bladder studies, and functional NIR
as a cortical brain imaging technique.11 The extensive use of
NIR spectroscopy to evaluate cerebral and muscle haemodynamic
responses during exercise in healthy subjects and athletes has
also been reviewed.11

Pharmaceuticals

A common application of NIR spectroscopy is the identification
of the active compound or active pharmaceutical ingredient
(API) present in a tablet or drug.7 It may also be used to identify
excipients. Due to an inverse relationship between particle size
and baseline offset, determination of particle size is also
possible. For NIR spectroscopy to be implemented efficiently
in the pharmaceutical area as part of PAT, it is required to be
used in-line and on-line. One of the most critical stages during
production where NIR can be applied is blending (apart from
identification of APIs and raw materials). To enable efficient
identification of active compounds or excipients, libraries of
typically used pharmaceutical materials are usually created.
To understand and interpret the spectra better, information
about the characteristic bands is required. Band assignments
for pharmaceutical ingredients have been addressed in a recent
publication reviewed by Jamrógiewicz et al.7 The use of NIR
hyperspectral imaging is gaining popularity in the field of
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pharmaceuticals, where the term ‘‘NIR chemical imaging’’
(NIR-CI) is preferably used. The benefit of the spatial dimension
is used here to determine the homogeneity of the distribution of
active compounds as well as the contents of these compounds in
the tablets.

Food adulteration

Adulteration of food has been a common practice since ancient
times.26,27 It can be unintentional (addition of foreign substances
due to negligence), but is often intentional (addition of foreign
substances for economic gain). An earlier practice of adding
substances to camouflage bad appearance and taste of rotten food,
could be detected visually or with basic scientific instrumentation.
Adulteration practices today are, however, more refined and
sophisticated, requiring advanced techniques for detection.
Most food adulteration investigations using NIR spectroscopy
to date have been reported as feasibility studies, performed on a
limited number of samples.26,27 The likely reason being the costs
involved to collect suitable and large enough sample databases and
evaluation of the models or possibly work performed in-house not
published in the public domain.

With the outbreak of the milk powder scandal (addition of
melamine) in China in 2008,33 and the more recent meat adul-
teration scandal, the detection of adulterants and consideration of
appropriate detection methods received renewed attention.48,49

NIR spectroscopy was considered in favour of Kjeldahl to detect
melamine since the Kjeldahl method fails to distinguish between
protein-based nitrogen and non-protein nitrogen (derived from
small organic molecules such as melamine). The Dumas method
also cannot eliminate the negative influence of non-protein
nitrogen on the determination of protein levels. The challenge
of detecting and quantifying melamine is the very low levels (often
present only in ppm). Fu et al.,50 however, claimed that NIR
hyperspectral imaging (990–1700 nm) and spectral similarity
analyses were effective to detect different concentrations of
melamine adulteration (from 0.025 to 1%) in milk powders. They
suggested an improvement in the accuracy of these techniques to
even lower levels (o0.02% or 200 ppm) by spreading the sample
mixtures in a thin layer in larger containers to increase the surface
area presented for NIR hyperspectral imaging.

Aquaphotomics

Water, known as a common component in biological systems,
is still not well understood. Due to the complexity of the role it
plays in biological systems water has received considerable
attention over the years. Aquaphotomics, which is based on
vis-NIR spectroscopy and multivariate data analysis, relates
water absorption patterns to the respective functions of
different biological systems.13 The aim is to build up a database
of water absorption bands (i.e. water matrix coordinates) and to
identify characteristic water absorption patterns (i.e. water
molecular structures) that could be used as biological markers.

This could contribute to a better understanding of complex
biological systems.

Conclusion

NIR spectroscopy is well established as a laboratory analysis system.
It is however not limited to the laboratory; at-line and in some cases
on-line and in-line analysis are becoming increasingly common.
There is still scope for improvement of in-line applications. Instru-
ment development, especially miniaturisation, now enables on-site
and in-field analysis. The instrument is thus more often taken to
the sample rather than bringing the sample to the instrument.
Improving accuracy and ensuring stability of these instruments are
still required. Further developments in chemometrics will continu-
ously enable more accurate, faster and more robust generic global
models. Today, many industries approach NIR spectroscopy as
the only viable alternative for quality control.
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