Copper(I)-catalyzed homo-coupling of terminal alkynes at room temperature under solvent and base free conditions using O2 as an oxidant

Guolin Cheng , Hong Zhang and Xiuling Cui *
Engineering Research Center of Molecular Medicine, Ministry of Education, Key Laboratory of Xiamen Marine and Gene Drugs, Institutes of Molecular Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China. E-mail: cuixl@hqu.edu.cn; Fax: +86-592-6162996; Tel: +86-592-6162996

Received 25th July 2013 , Accepted 15th November 2013

First published on 19th November 2013


Abstract

The homo-coupling of various terminal alkynes were realized in the presence of 0.5 mol% CuI and 5 mol% benzylamine. This transformation proceeded at room temperature under solvent and base free conditions using O2 as an oxidant. The TON was up to 1760.


The structural motif of 1,3-diynes exists widely in pharmaceuticals and natural products with a variety of bioactivities.1 For example, phosphoiodyns A (Fig. 1), isolated from a Korean marine sponge Placospongia, displays potential hPPARδ (human peroxisome proliferator-activated receptor delta) activity (EC50 = 23.7 nM).1f Debilisone C, isolated from the roots of Polyalthia debilis, exhibits antimycobacterial activity against Mycobacterium tuberculosis (MIC = 12.5 μg mL−1).1c,g Moreover, 1,3-diynes are also important building blocks in organic synthesis2 and functional materials.3 Consequently, establishing efficient and mild access to 1,3-diynes is of great significance.
image file: c3ra43873b-f1.tif
Fig. 1 Bioactive natural products with 1,3-diyne structure.

The direct Csp–Csp coupling reactions have been proved to be powerful and straightforward to access 1,3-diynes, including Glaser coupling,4 Hay coupling,5 and Cadiot–Chodkiewicz coupling.6 In recent years, a great progress has been made in this field. A number of metal catalytic systems for the Csp–Csp coupling have been reported,7–15 such as Cu(II),8 Cu(I),9 Cu supported heterogeneous catalysts,11 Cu substituted homogeneous catalysts,12 and the combination Cu with Pd,10 Ni,13 Ag14 or Fe.15 However, some challenges still exist, such as requirement of complicate ligands, excess bases, external oxidants, organic solvents, and hash reaction conditions, and accompaniment with the byproduct of enynes when Pd catalysts are involved in the reaction.16 Moreover, the procedures reported suffer from low TON (turnover number). In the view point of green chemistry, development of aerobic oxidative homo-coupling of terminal alkynes under solvent and base free conditions at room temperature with high TON is of great significance.17–19 Herein, we disclose the combination of CuI/benzylamine as an effective catalytic system for the oxidative homo-coupling of various terminal alkynes. Both of CuI and benzylamine are cheap and commercial available. This transformation features with low catalyst loading, environmental friendliness, mild reaction conditions, and a general substrate scope.

Phenylacetylene 1a and CuI were initially chosen as a substrate and catalyst to screen the reaction parameters. As shown in Table 1, the ligands were examined first (entries 1–13). No desired product was observed in the absence of ligand (entry 1). Pyridine gave the corresponding product 2a (entry 2) in 12% yield. While, a trace amount of product 2a was detected by using aqueous ammonia or triethylamine as ligand (entries 3 and 4). TMEDA (N, N, N′, N′-tetra-methylethylenediamine) could provide 2a in 31% yield (entry 5). Phen (1,10-phenanthroline), a commonly used ligand in copper catalyzed reactions, afforded 2a in 12% yield (entry 6). Interestingly, CuI powder could be resolved in 5 equiv. (equivalent) of benzylamine quickly, and affording a brown clear solution immediately. After stirred at RT (room temperature) for 12 h, the product 2a was precipitated as a white solid and was isolated in 98% yield (entry 7). Then, several benzylamine derivatives were next examined for this transformation. Electron-rich benzylamines (entries 8 and 9) gave better results than electron-deficient benzylamines (entries 10–12), probably because CuI is more likely to form the Cu complex with electron-rich amines. However, N-methylbenzylamine only gave 2a in 55% yield (entries 13). Considering its low cost and convenient availability, benzylamine was chosen as a ligand in the next examination. A variety of Cu salts, including Cu(II) and Cu(I) salts, were screened. No better result was obtained than CuI (entries 14–20). Further investigation showed that 1 mol% CuI with 5 mol% benzylamine under air gave the best result (entries 7, 21–23). It is worth noting that 0.5 mol% CuI was efficient enough for this transformation by using 1 atm O2 as an oxidant (entry 24).

Table 1 Screening the reaction parameters for the homo-coupling of phenylacetylene 1aa

image file: c3ra43873b-u1.tif

Entry Catalyst Ligand Time (h) Yieldb (%)
a Reactions conditions: phenylacetylene 1a (3.0 mmol), 1 mol% copper salts, 5 mol% ligand, room temperature, under air. b Isolated yield based on 1a. c 3 mol% benzylamine. d 7 mol% benzylamine. e 0.5 mol% CuI. f Under 1 atm O2. BZA = benzylamine.
1 CuI 12 0
2 CuI Pyridine 12 12
3 CuI NH3 (aq) 12 Trace
4 CuI Et3N 12 Trace
5 CuI TMEDA 12 31
6 CuI Phen 12 12
7 CuI BZA 12 98
8 CuI 4-tBuBZA 10 98
9 CuI 4-MeOBZA 11 98
10 CuI 3-ClBZA 24 89
11 CuI 4-ClBZA 24 86
12 CuI 2-FBZA 12 90
13 CuI N-MeBZA 12 55
14 CuSO4 BZA 12 26
15 Cu(OAc)2 BZA 12 14
16 CuCl2 BZA 12 35
17 CuO BZA 12 Trace
18 Cu2O BZA 12 32
19 CuCl BZA 12 36
20 CuBr BZA 12 58
21c CuI BZA 48 55
22d CuI BZA 12 97
23e CuI BZA 24 95
24e,f CuI BZA 12 98


The substrate generality and scope of this transformation were explored. The results were listed in Table 2. The terminal alkynes with electron-donating as well as electron-withdrawing substituents proceeded homo-coupling reactions smoothly and afforded the corresponding symmetrical aromatic 1,3-diyne derivatives 2a–i in good to excellent yields (entries 1–9). However, the alkyne 1j with amino group only gave the corresponding product 2j in 63% yield under the optimal reaction conditions (entry 10). The heteroaromatic alkyne 1k was also a suitable substrate and gave the desired 1,3-diyne 2k in 74% yield under the optimal reaction conditions (entry 11). Moreover, this catalytic system was applied to aliphatic terminal alkynes. For instance, the symmetrical aliphatic 1,3-diynes 2l–n were obtained in 83%, 94%, and 99% yields, respectively (entries 12–14).

Table 2 Copper(I)-catalyzed oxidative homo-coupling of terminal alkynesa

image file: c3ra43873b-u2.tif

Entry R Product Time (h) Yieldb (%)
a Reactions conditions: alkynes 1 (3.0 mmol), 0.5 mol% CuI, 5 mol% benzylamine, room temperature under O2. b Isolated yield based on 1.
1 Ph 2a 12 98
2 2-MeC6H4 2b 12 81
3 3-MeC6H4 2c 12 99
4 4-MeC6H4 2d 12 99
5 4-n-PentylC6H4 2e 17 99
6 4-n-ButylC6H4 2f 12 99
7 4-OMeC6H4 2g 14 92
8 3-ClC6H4 2h 14 87
9 4-FC6H4 2i 12 90
10 3-NH2C6H4 2j 48 63
11 Thienyl-2– 2k 22 74
12 n-Butyl 2l 36 83
13 n-Hexyl 2m 36 94
14 t-Butyl 2n 24 97


This approach is also capable for solid terminal alkynes, however organic solvent is required. THF was found to be a suitable solvent for this transformation and aromatic product 2o was generated in 95% yield (Scheme 1). Aliphatic product 2p bearing a L-proline scaffold was isolated in 96% yield as a single diastereomer which might be applied in life science.


image file: c3ra43873b-s1.tif
Scheme 1 Transformation for solid terminal alkynes. Reaction conditions: terminal alkynes (3.0 mmol), CuI (0.5 mol%), benzylamine (5 mol%) in THF (3 mL) was stirred at room temperature under 1 atm O2.

Finally, a gram experiment with 20 mmol (2.04 g) 1a and CuI (0.05 mol% 1.9 mg) was employed (Scheme 2). The TON reached 1340 and 1760 under air or 1 atm O2, which are the highest TONs for the Cu-catalyzed homo-coupling reaction reported to date (see the ESI).


image file: c3ra43873b-s2.tif
Scheme 2 Gram scale experiment. Reaction conditions: 1a (20 mmol) in the presence of CuI (0.05 mol%), benzylamine (5 mol%) was stirred at room temperature under air (condition 1) or under 1 atm O2 (condition 2).

In summary, we have developed a practical, economical and green approach for the CuI catalyzed oxidative homo-coupling of terminal alkynes under solvent and base free conditions. The transformation is general and can involve aromatic, heteroaromatic, and aliphatic alkynes. The desired symmetrical 1,3-diynes were provided in good to excellent yields. The TON was up to 1760.

This work was supported by National Natural Science Foundation of China (21202048), Program for Minjiang Scholar (10BS216), Science Research Item of Science and Technology of Xiamen City (3502z201014) and the Natural Science Foundation of Fujian Province, China (2013J01050).

Notes and references

  1. (a) S. Kanokmedhakul, K. Kanokmedhakul, I. Kantikeaw and N. Phonkerd, J. Nat. Prod., 2006, 69, 68–72 CrossRef CAS PubMed; (b) S. Kanokmedhakul, K. Kanokmedhakul and R. Lekphrom, J. Nat. Prod., 2007, 70, 1536–1538 CrossRef CAS PubMed; (c) N. Panthama, S. Kanokmedhakul and K. Kanokmedhakul, J. Nat. Prod., 2010, 73, 1366–1369 CrossRef CAS PubMed; (d) K. Fushimi, K. Anzai, S. Tokuyama, Y. Kiriiwa, N. Matsumoto, A. Sekiya, D. Hashizume, K. Nagasawa, H. Hirai and H. Kawagishi, Tetrahedron, 2012, 68, 1262–1265 CrossRef CAS PubMed; (e) B. Zhang, Y. Wang, S.-P. Yang, Y. Zhou, W.-B. Wu, W. Tang, J.-P. Zuo, Y. Li and J.-M. Yue, J. Am. Chem. Soc., 2012, 134, 20605–20608 CrossRef CAS PubMed; (f) H. Kim, J. Chin, H. Choi, K. Baek, T.-G. Lee, S. E. Park, W. Wang, D. Hahn, I. Yang, J. Lee, B. Mun, M. Ekins, S.-J. Nam and H. Kang, Org. Lett., 2013, 15, 100–103 CrossRef CAS PubMed; (g) B. Saikia, T. J. Devi and N. C. Barua, Org. Biomol. Chem., 2013, 11, 905–913 RSC.
  2. (a) H. Jiang, W. Zeng, Y. Li, W. Wu, L. Huang and W. Fu, J. Org. Chem., 2012, 77, 5179–5183 CrossRef CAS PubMed; (b) L. Wang, X. Yu, X. Feng and M. Bao, Org. Lett., 2012, 14, 2418–2421 CrossRef CAS PubMed; (c) L. Wang, X. Yu, X. Feng and M. Bao, J. Org. Chem., 2013, 78, 1693–1698 CrossRef CAS PubMed.
  3. (a) M. Ladika, T. E. Fisk, W. S. W. Wu and S. D. Jons, J. Am. Chem. Soc., 1994, 116, 12093–12094 CrossRef CAS; (b) S. Eisler, A. D. Slepkov, E. Elliott, T. Luu, R. McDonald, F. A. Hegmann and R. R. Tykwinski, J. Am. Chem. Soc., 2005, 127, 2666–2676 CrossRef CAS PubMed; (c) T. Luu, E. Elliott, A. D. Slepkov, S. Eisler, R. McDonald, F. A. Hegmann and R. R. Tykwinski, Org. Lett., 2005, 7, 51–54 CrossRef CAS PubMed.
  4. C. Glaser, Ber. Dtsch. Chem. Ges., 1869, 2, 422–424 CrossRef.
  5. A. S. Hay, J. Org. Chem., 1962, 27, 3320–3321 CrossRef CAS.
  6. W. Chodkiewicz and P. Cadiot, C. R. Hebd. Seances Acad. Sci., 1955, 241, 1055–1057 CAS.
  7. (a) P. Siemsen, R. C. Livingston and F. Diederich, Angew. Chem., Int. Ed., 2000, 39, 2633–2657 CrossRef; (b) M. E. Krafft, C. Hirosawa, N. Dalal, C. Ramsey and A. Stiegman, Tetrahedron Lett., 2001, 42, 7733–7736 CrossRef CAS; (c) F. Nador, L. Fortunato, Y. Moglie, C. Vitale and G. Radivoy, Synthesis, 2009, 4027–4031 CAS; (d) A. Leyva-Perez, A. Domenech, S. I. Al-Resayes and A. Corma, ACS Catal., 2012, 2, 121–126 CrossRef CAS; (e) H.-Y. Gao, H. Wagner, D. Zhong, J.-H. Franke, A. Studer and H. Fuchs, Angew. Chem., Int. Ed., 2013, 52, 4024–4028 CrossRef CAS PubMed; (f) M. H. Vilhelmsen, J. Jensen, C. G. Tortzen and M. B. Nielsen, Eur. J. Org. Chem., 2013, 701–711 CrossRef CAS.
  8. (a) G. W. Kabalka, L. Wang and R. M. Pagni, Synlett, 2001, 108–110 CAS; (b) H. F. Jiang, J. Y. Tang, A. Z. Wang, G. H. Deng and S. R. Yang, Synthesis, 2006, 1155–1161 CrossRef CAS PubMed; (c) X. Lu, Y. Zhang, C. Luo and Y. Wang, Synth. Commun., 2006, 36, 2503–2511 CrossRef CAS; (d) K. Balaraman and V. Kesavan, Synthesis, 2010, 3461–3466 CAS; (e) D. Wang, J. Li, N. Li, T. Gao, S. Hou and B. Chen, Green Chem., 2010, 12, 45–48 RSC; (f) R. Balamurugan, N. Naveen, S. Manojveer and M. V. Nama, Aust. J. Chem., 2011, 64, 567–575 CrossRef CAS; (g) X. Jia, K. Yin, C. Li, J. Li and H. Bian, Green Chem., 2011, 13, 2175–2178 RSC; (h) Y.-N. Li, J.-L. Wang and L.-N. He, Tetrahedron Lett., 2011, 52, 3485–3488 CrossRef CAS PubMed; (i) T.-M. Wu, S.-H. Huang and F.-Y. Tsai, Appl. Organomet. Chem., 2011, 25, 395–399 CrossRef CAS; (j) Y. Ren, M. Li, J. Yang, J. Peng and Y. Gu, Adv. Synth. Catal., 2011, 353, 3473–3484 CrossRef CAS; (k) N. Gulia, K. Osowska, B. Pigulski, T. Lis, Z. Galewski and S. Szafert, Eur. J. Org. Chem., 2012, 4819–4830 CrossRef CAS; (l) X. Niu, C. Li, J. Li and X. Jia, Tetrahedron Lett., 2012, 53, 5559–5561 CrossRef CAS PubMed.
  9. (a) J. S. Yadav, B. V. S. Reddy, K. B. Reddy, K. U. Gayathri and A. R. Prasad, Tetrahedron Lett., 2003, 44, 6493–6496 CrossRef CAS; (b) B. C. Ranu and S. Banerjee, Lett. Org. Chem., 2006, 3, 607–609 CrossRef CAS; (c) D. Li, K. Yin, J. Li and X. Jia, Tetrahedron Lett., 2008, 49, 5918–5919 CrossRef CAS PubMed; (d) S. Adimurthy, C. C. Malakar and U. Beifuss, J. Org. Chem., 2009, 74, 5648–5651 CrossRef CAS PubMed; (e) L. Li, J. Wang, G. Zhang and Q. Liu, Tetrahedron Lett., 2009, 50, 4033–4036 CrossRef CAS PubMed; (f) Q. Zheng, R. Hua and Y. Wan, Appl. Organomet. Chem., 2010, 24, 314–316 CAS; (g) A. Kusuda, X.-H. Xu, X. Wang, E. Tokunaga and N. Shibata, Green Chem., 2011, 13, 843–846 RSC; (h) S. Zhang, X. Liu and T. Wang, Adv. Synth. Catal., 2011, 353, 1463–1466 CrossRef CAS; (i) K. Yin, C. Li, J. Li and X. Jia, Green Chem., 2011, 13, 591–593 RSC; (j) K. Yin, C.-J. Li, J. Li and X.-S. Jia, Appl. Organomet. Chem., 2011, 25, 16–20 CrossRef CAS.
  10. (a) A. W. Lei, M. Srivastava and X. M. Zhang, J. Org. Chem., 2002, 67, 1969–1971 CrossRef CAS PubMed; (b) D. A. Alonso, C. Najera and M. C. Pacheco, Adv. Synth. Catal., 2003, 345, 1146–1158 CrossRef CAS; (c) I. J. S. Fairlamb, P. S. Bauerlein, L. R. Marrison and J. M. Dickinson, Chem. Commun., 2003, 632–633 RSC; (d) C. H. Oh and V. R. Reddy, Tetrahedron Lett., 2004, 45, 5221–5224 CrossRef CAS PubMed; (e) J. Gil-Molto and C. Najera, Eur. J. Org. Chem., 2005, 4073–4081 CrossRef CAS; (f) J. H. Li, Y. Liang and Y. X. Xie, J. Org. Chem., 2005, 70, 4393–4396 CrossRef CAS PubMed; (g) J. H. Li, L. Yun and X. D. Zhang, Tetrahedron, 2005, 61, 1903–1907 CrossRef CAS PubMed; (h) M. Shi and H.-X. Qian, Appl. Organomet. Chem., 2006, 20, 771–774 CrossRef CAS; (i) T. Kurita, M. Abe, T. Maegawa, Y. Monguchi and H. Sajiki, Synlett, 2007, 2521–2524 CAS; (j) J. Yan, F. Lin and Z. Yang, Synthesis, 2007, 1301–1303 CrossRef CAS PubMed; (k) J. Yan, J. Wu and H. Jin, J. Organomet. Chem., 2007, 692, 3636–3639 CrossRef CAS PubMed; (l) F. Yang, X. Cui, Y.-N. Li, J. Zhang, G.-R. Ren and Y. Wu, Tetrahedron, 2007, 63, 1963–1969 CrossRef CAS PubMed; (m) L. Zhou, H.-Y. Zhan, H.-L. Liu and H.-F. Jiang, Chin. J. Chem., 2007, 25, 1413–1416 CrossRef CAS; (n) S.-N. Chen, W.-Y. Wu and F.-Y. Tsai, Green Chem., 2009, 11, 269–274 RSC; (o) G. Hilt, C. Hengst and M. Arndt, Synthesis, 2009, 395–398 CrossRef CAS PubMed; (p) K. Mitsudo, N. Kamimoto, H. Murakami, H. Mandai, A. Wakamiya, Y. Murata and S. Suga, Org. Biomol. Chem., 2012, 10, 9562–9569 RSC.
  11. (a) B. C. Zhu and X. Z. Jiang, Appl. Organomet. Chem., 2007, 21, 345–349 CrossRef CAS; (b) T. Oishi, T. Katayama, K. Yamaguchi and N. Mizuno, Chem.–Eur. J., 2009, 15, 7539–7542 CrossRef CAS PubMed; (c) S. Chassaing, A. Alix, T. Boningari, K. S. S. Sido, M. Keller, P. Kuhn, B. Louis, J. Sommer and P. Pale, Synthesis, 2010, 1557–1567 CAS; (d) F. Alonso, T. Melkonian, Y. Moglie and M. Yus, Eur. J. Org. Chem., 2011, 2524–2530 CrossRef CAS; (e) T. Oishi, K. Yamaguchi and N. Mizuno, ACS Catal., 2011, 1, 1351–1354 CrossRef CAS; (f) R. Schmidt, R. Thorwirth, T. Szuppa, A. Stolle, B. Ondruschka and H. Hopf, Chem.–Eur. J., 2011, 17, 8129–8138 CrossRef CAS PubMed; (g) R. Xiao, R. Yao and M. Cai, Eur. J. Org. Chem., 2012, 4178–4184 CrossRef CAS.
  12. (a) K. Kamata, S. Yamaguchi, M. Kotani, K. Yamaguchi and N. Mizuno, Angew. Chem., Int. Ed., 2008, 47, 2407–2410 CrossRef CAS PubMed; (b) K. Yamaguchi, K. Kamata, S. Yamaguchi, M. Kotani and N. Mizuno, J. Catal., 2008, 258, 121–130 CrossRef CAS PubMed; (c) Z. Ma, X. Wang, S. We, H. Yang, F. Zhang, P. Wang, M. Xie and J. Ma, Catal. Commun., 2013, 39, 24–29 CrossRef CAS PubMed.
  13. (a) W. Yin, C. He, M. Chen, H. Zhang and A. Lei, Org. Lett., 2009, 11, 709–712 CrossRef CAS PubMed; (b) J. D. Crowley, S. M. Goldup, N. D. Gowans, D. A. Leigh, V. E. Ronaldson and A. M. Z. Slawin, J. Am. Chem. Soc., 2010, 132, 6243–6248 CrossRef CAS PubMed.
  14. Y. Liao, R. Fathi and Z. Yang, Org. Lett., 2003, 5, 909–912 CrossRef CAS PubMed.
  15. (a) X. Meng, C. Li, B. Han, T. Wang and B. Chen, Tetrahedron, 2010, 66, 4029–4031 CrossRef CAS PubMed; (b) J. M. Perez, R. Cano, M. Yus and D. J. Ramon, Synthesis, 2013, 45, 1373–1379 CrossRef CAS PubMed; (c) P. Wang, X. Liu and S. Zhang, Chin. J. Chem., 2013, 31, 187–194 CrossRef CAS.
  16. X. Pu, H. Li and T. J. Colacot, J. Org. Chem., 2013, 78, 568–581 CrossRef CAS PubMed.
  17. For the selected papers on solvent-free metal-transition catalyzed reactions, see: (a) K. Tanaka and F. Toda, Chem. Rev., 2000, 100, 1025–1074 CrossRef CAS PubMed; (b) A. L. Garay, A. Pichon and S. L. James, Chem. Soc. Rev., 2007, 36, 846–855 RSC; (c) B. Rodriguez, A. Bruckmann, T. Rantanen and C. Bolm, Adv. Synth. Catal., 2007, 349, 2213–2233 CrossRef CAS; (d) L. Basolo, A. Bernasconi, E. Borsini, G. Broggini and E. M. Beccalli, ChemSusChem, 2011, 4, 1637–1642 CrossRef CAS PubMed; (e) A. Stolle and B. Ondruschka, Pure Appl. Chem., 2011, 83, 1343–1349 CrossRef CAS.
  18. For the selected papers on ligand-free copper-catalyzed reactions, see: (a) M. Bandini, R. Luque, V. Budarin and D. J. Macquarrie, Tetrahedron, 2005, 61, 9860–9868 CrossRef CAS PubMed; (b) A. Sharifi, M. Mirzaei and M. R. Naimi-Jamal, Monatsh. Chem., 2006, 137, 213–217 CrossRef CAS; (c) A. Correa and C. Bolm, Adv. Synth. Catal., 2007, 349, 2673–2676 CrossRef CAS; (d) F. Bellina, C. Calandri, S. Cauteruccio and R. Rossi, Eur. J. Org. Chem., 2007, 2147–2151 CrossRef CAS; (e) R. Zhu, L. Xing, X. Wang, C. Cheng, D. Su and Y. Hu, Adv. Synth. Catal., 2008, 350, 1253–1257 CrossRef CAS; (f) F.-F. Yong and Y.-C. Teo, Synlett, 2010, 3068–3072 CAS; (g) S. Azzaro, M. Desage-El Murr, L. Fensterbank, E. Lacote and M. Malacria, Synlett, 2011, 849–851 CAS.
  19. For the selected papers on using of oxygen as oxidant, see: (a) K. M. Gligorich and M. S. Sigman, Angew. Chem., Int. Ed., 2006, 45, 6612–6615 CrossRef CAS PubMed; (b) B. Liegault and K. Fagnou, Organometallics, 2008, 27, 4841–4843 CrossRef CAS; (c) J. Piera and J.-E. Backvall, Angew. Chem., Int. Ed., 2008, 47, 3506–3523 CrossRef CAS PubMed; (d) G. Liu, G. Yin and L. Wu, Angew. Chem., Int. Ed., 2008, 47, 4733–4736 CrossRef CAS PubMed; (e) A. Wang, H. Jiang and H. Chen, J. Am. Chem. Soc., 2009, 131, 3846–3847 CrossRef CAS PubMed; (f) K. M. Gligorich and M. S. Sigman, Chem. Commun., 2009, 3854–3867 RSC; (g) Z. Fu, S. Huang, W. Su and M. Hong, Org. Lett., 2010, 12, 4992–4995 CrossRef CAS PubMed; (h) G. Broggini, E. M. Beccalli, E. Borsini, A. Fasana and G. Zecchi, Synlett, 2011, 227–230 CrossRef CAS PubMed; (i) R. I. McDonald and S. S. Stahl, Angew. Chem., Int. Ed., 2010, 49, 5529–5532 CrossRef CAS PubMed; (j) B. Su, L. Li, Y. Hu, Y. Liu and Q. Wang, Adv. Synth. Catal., 2012, 354, 383–387 CrossRef CAS; (k) A. N. Campbell and S. S. Stahl, Acc. Chem. Res., 2012, 45, 851–863 CrossRef CAS PubMed; (l) B. Rao, W. Zhang, L. Hu and M. Luo, Green Chem., 2012, 14, 3436–3440 RSC.

Footnote

Electronic supplementary information (ESI) available. See DOI: 10.1039/c3ra43873b

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.