Two novel isomeric organic anion-water aggregations: 1D tape and 3D 2-fold interpenetrated diamond network

Tuoping Hu *a, Xiaoliang Zhao b, Xiaoqin Hu a, Yumin Xu a, Di Sun *b and Daofeng Sun *b
aDepartment of Chemistry, North University of China, Taiyuan, Shanxi 030051, P. R. China. E-mail: hutuopingsx@yahoo.com.cn
bSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China. E-mail: dsun@sdu.edu.cn; dfsun@sdu.edu.cn

Received 8th September 2011 , Accepted 23rd September 2011

First published on 27th October 2011


Abstract

Two novel hydrogen-bonded isomeric water-imdn aggregations were observed in two Co(II) coordination compounds, formulated as {[Co(2,2′-bpy)3][(imdn)2(H2O)4]}(1) and {[Co(4,4′-bpy)2][(imdn)2(H2O)4]}n(2) (bpy = bipyridine, Himdn = 2H-imidazole-4,5-dicarbonitrile). The water-imdn aggregation in 1 is a 1D hydrogen-bonded tape based on an octamer water cluster. For 2, two imdn and four water molecules are hydrogen bonded to an unprecedented bag-like binary supramolecular cluster which acts as a tetrahedral node to be hydrogen-bonded to its four neighbors, giving a 3D network with a diamond topology. Two translationally equivalent diamond networks mutually interpenetrate each other to form the resulting 2-fold diamond network. The different host structural motifs are responsible to the dissimilarity of two isomeric water-imdn aggregations.


Accompanying the recent upsurge of interest in metal–organic frameworks (MOFs), hydrogen bond in supramolecular network has attracted considerable attention due to their directionality and robustness.1 Compared to the widely reported interpenetrated MOFs, there are few instances involving entangled hydrogen-bonded network,2 which is still a major challenge in the crystal engineering of molecular solids due to elusive linking mode between the supramolecular synthons. One of the most famous hydrogen-bonded interpenetrated network was an elongated 5-fold diamond structure based on tetrahedral adamantane-1,3,5,7-tetracarboxylic acid.3 On the other hand, water has captured more interest because of its fundamental importance in many biological and chemical processes.4 Small water clusters are the subject of considerable theoretical and experimental interest as they are the first step toward understanding the behavior of bulk water as well as its anomalous behavior.5 Diverse water aggregations such as discrete tetramers,6 hexamers,7 heptamers,8 octamers,9 nonamers,10 decamers,11 dodecamers,12 tetradecamers,13 hexadecamers,14 octadecamers,15 icosadecamers16 and infinite 1D chains,17 1D tapes,18 2D layers19, 3D water structures20 have been characterized in the cavities of MOFs or metal-free organic hosts by X-ray crystallography. As a branch of water chemistry, anion-water aggregations are important in understanding the behaviour of anions in water-based biological systems.21 As we know, only limited examples related to inorganic anion-water aggregations such as [(NO3)4(H2O)6]4, [Cl(H2O)4], [Cl2(H2O)6]2, and [Br2(H2O)6]2 have been reported so far,22 and what is less recognised, however, is organic anion-water aggregations.23 Two different well-resolved 2D dicarboxylate-water aggregations, {[(bdc)2(H2O)12]4−}n24a and {[(bdc)(H2O)8]2−}n24b (H2bdc = 1,3-benzenedicarboxylic acid) have been observed in a silver(I) and a copper(II) supramolecular frameworks, respectively.

As we know, 2H-imidazole-4,5-dicarbonitrile (Himdn) is a potential versatile ligand in the construction of MOFs due to (i) up to four N coordination sites with different orientations, (ii) various deprotonated forms; (iii) vulnerable CN group which can form a carboxylate or tetrazole group through in situ ligand reaction. We previously reported two open Zn(II) MOFs based on 2H-imidazole-4,5-dicarboxylic acid and 4,5-di(1H-tetrazol-5-yl)-2H-imidazole, which are in situ generated from hydrolysis of Himdn and cycloaddition of Himdn with azide, respectively.25 Nevertheless, because of its strong coordination ability and vulnerable nature, the imdn inclusion compounds, especially hydrated imdn species are very scarce.26

Considering the points mentioned above and our previous work, we selected chelating 2,2′-bipyridine (2,2′-bpy) and bridging 4,4′-bipyridine (4,4′-bpy) as ligands incorporating 2H-imidazole-4,5-dicarbonitrile as auxiliary ligand to construct Co(II) MOFs, and surprisingly obtained two supramolecular compounds, formulated as {[Co(2,2′-bpy)3][(imdn)2(H2O)4]} (1) and {[Co(4,4′-bpy)2][(imdn)2(H2O)4]}n (2) (Himdn = 2H-imidazole-4,5-dicarbonitrile) featuring two novel isomeric water-imdn aggregations with the same composition of [(imdn)2(H2O)4]n (Scheme 1). The water-imdn aggregation in 1 is a 1D hydrogen-bonded tape based on an octamer water cluster, while water-imdn aggregation in 2 becomes a 3D 2-fold interpenetrated diamond network based on an unprecedented [(imdn)2(H2O)4] binary supramolecular cluster.


The isomeric water-imdn aggregations in 1 and 2.
Scheme 1 The isomeric water-imdn aggregations in 1 and 2.

Complexes 1 and 2 were obtained by adding aqueous solution of Co(NO3)2·6H2O, Himdn and tetrabutyl ammonium bromide to bpy in the cuvette (see ESI). The mixtures were capped and allowed to stand at room temperature until crystals formed within ten days. The thermal stabilities of 1 and 2 were explored by thermogravimetric analysis (TGA, Fig. S1). The TGA curve of 1 shows the weight loss of 37.8% in the temperature range of 30–300 °C, corresponding to the exclusion of four lattice water molecules and two imdn (calcd: 36.7%), then the residual component collapses. Complex 2 shows the weight loss of 43.8% from 30 to 350 °C (calcd: 45.2%), corresponding to the losses the guest components and two coordinated water molecules, then the guest-free framework starts to decompose. The +2 oxidation states of Co atoms in 1 and 2 are determined on the basis of charge balance consideration and bond valence sum (BVS) calculations.27

The crystal structure of 1 was determined by single-crystal X-ray diffraction analysis (see ESI). Complex 1 crystallizes in monoclinic space group of P21/c with an asymmetric unit that contains one Co(II) ion, three 2,2′-bpy ligand, two imdn anions and four water molecules. As shown in Fig. 1a, the Co1 is coordinated by six N atoms from three 2,2′-bpy ligand, displaying an octahedral geometry. The Co–N bond lengths range from 2.109(2) to 2.154(2) Å, which are comparable to the related Co(II) compounds.28 The N–Co–N angles range from 76.63(8) –171.71(8)°. The [Co(2,2′-bpy)3]2+ complex cation and imdn anion are connected by non-classic C–H⋯NCN hydrogen bonding interactions. Although the supramolecular systems based on [Co(2,2′-bpy)3]2+ unit and various anionic counterparts (such as polyoxovanadate and octamolybdate) were widely observed,29 marriage of imdn anions and this common cationic unit is unprecedented.


(a) ORTEP representation of 1 showing the local coordination environment around Co(ii) center with 50% thermal ellipsoid probability. Hydrogen atoms on C atoms have been omitted for clarity. (b) Octamer water cluster based on a chair-like hexamer (Symmetry codes: (i) x − 1, y, z; (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 1, −y + 1, −z; (vi) −x, −y + 1, −z; (vii) x − 1, y, z − 1). (c) 1D hydrogen-bonded water-imdn aggregation in 1.
Fig. 1 (a) ORTEP representation of 1 showing the local coordination environment around Co(II) center with 50% thermal ellipsoid probability. Hydrogen atoms on C atoms have been omitted for clarity. (b) Octamer water cluster based on a chair-like hexamer (Symmetry codes: (i) x − 1, y, z; (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 1, −y + 1, −z; (vi) −x, −y + 1, −z; (vii) x − 1, y, z − 1). (c) 1D hydrogen-bonded water-imdn aggregation in 1.

The most noteworthy feature of 1 is a 1D hydrogen-bonded imdn-water aggregation based on an octamer water cluster. As shown in Fig. 1b, the centrosymmetric octamer water cluster consists of four water molecules (O1W-O4W) and their centrosymmetric equivalents. The short contacts and the angles between them indicate the existence of hydrogen bonds, which drive the formation of a hydrophilic octamer water cluster. The water octamer can be seen as a chair-like hexamer in the core which links two additional water molecules dangling at two diagonally opposite ends of the chair with a distance of 8.573(3) Å, which is structurally analogous to the simple hydrocarbon (1r,4r)-1,4-dimethylcyclohexane. In the cyclic hexamer, each water molecules act as single hydrogen bond donor and single hydrogen bond acceptor, as a result, the hydrogen bonding motif is R66(12), according to the graphset analysis nomenclature.30 The O3W derivates from the plane determined by O1W, O2Wiii, O1Wvi and O2Wi of 0.73 Å. As listed in Table 1, the O⋯O distances in the octamer water cluster fall in the range of 2.678(3)–2.774(3) Å with an average value of 2.729(3) Å, compared to 2.76 Å (−90 °C) in hexagonal (Ih) ice,31 2.74 Å in cubic (Ic) ice32 or 2.85 Å in liquid water.33 The O⋯O⋯O angles vary from 93.91(9) to 117.63(10)° with an average value of 111.9° which slightly deviates from the angle of 109.3° in hexagonal ice. The deprotonated Himdn used the heterocyclic N atoms as double hydrogen bond acceptors to bridge the octamer water clusters into 1D tape along the a axis (Fig. 1c). The O⋯N contacts span the range of 2.831(3)–2.875(3) Å with an average value of 2.858(3) Å, which is ∼0.1 Å longer than that of O⋯O distances. In the 1D tape, two imdn anions and three water molecules (O1Wiii, O2W and O4Wii) are hydrogen-bonded to a R55(14) motif which is further bound together with its inversion-related equivalent by O3W and O3Wiii (Fig. S2). (Symmetry codes: (i) x − 1, y, z; (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 1, −y + 1, −z; (vi) −x, −y + 1, −z).

Table 1 The hydrogen bond geometries (Å and °) for 12
Compound 1a
a Symmetry codes: (i) x − 1, y, z; (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 1, −y + 1, −z; (iv) x, y, z − 1; (v) x, y, z + 1.
D–H⋯A D–H H⋯A DA D–H⋯A
O1W–H1WA⋯O3Wi 0.85 1.88 2.717(3) 170.1
O1W–H1WB⋯N11 0.85 2.01 2.855(3) 170.3
O2W–H2WA⋯N9ii 0.85 2.13 2.831(3) 140.0
O2W–H2WB⋯O1Wiii 0.85 1.88 2.678(3) 156.2
O3W–H3WA⋯O4Wiv 0.85 1.95 2.774(3) 162.9
O3W–H3WB⋯O2W 0.85 1.93 2.746(3) 161.9
O4W–H4WA⋯N12v 0.85 2.03 2.870(3) 171.6
O4W–H4WB⋯N10 0.85 2.09 2.875(3) 154.3

Compound 2b
b Symmetry codes: (iv) y + 1, x − 1/2, z − 1/4; (v) −y, x − 1/2, z + 1/4.
O1W—H1WA⋯N3iv 0.85 1.90 2.718(5) 161.0
O2W—H2WA⋯O3W 0.85 1.87 2.713(4) 174.8
O3W—H3WA⋯N4v 0.85 1.94 2.778(5) 168.4
O3W—H3WB⋯N5 0.85 2.09 2.938(5) 175.2


When using the bidentate bridging ligand in the replacement of bidentate chelating ligand, we obtained compound 2 as a 2D sheet with (4,4)-sql topology. Compound 2 crystallizes in tetragonal crystal system of I41cd space group. The asymmetric unit of 2 contains one Co(II) ions with half occupancy, one 4,4′-bpy, one imdn anion, and three water molecules, two of which are half occupancy. One crystallographic 2-fold axis passes through the Co1, O1W and O2W. As shown in Fig. 2a, the Co(II) ion also locates in an octahedral coordination environment, completed by four N atom from four different 4,4′-bpy and two O atoms of water molecules. The rigid bridging 4,4′-bpy ligands link the Co(II) centers to form a 2D sheet along the ab plane with the window size of 11.46 × 11.46 Å, which is suitable to accommodation of a pair of imdn anions. The pairs of imdn anions in each grid are packed together through weak π⋯π interaction with an inter-centroid distance of 3.764(2) Å (Fig. 2b). A similar 2D (4,4)-sql net has been observed in a [Zn(4,4′-bpy)2(NO3)2]n coordination polymer where pairs of o-dichlorobenzene (o-DCB) molecules were located within the square grids and pyrene molecules were intercalated between the 2D nets. The inclined interpenetration was also found between the [(o-DCB)2(pyrene)]n noncovalent sheets and the (4,4)-sql nets.34


(a) ORTEP representation of 2 showing the local coordination environment around Co(ii) center with 50% thermal ellipsoid probability. Hydrogen atoms on C atoms have been omitted for clarity. (Symmetry codes: (i) −x + 1/2, y + 1/2, z; (ii) x + 1/2, −y − 1/2, z; (iii) −x + 1, −y, z). (b) Ball-and-Stick representation of the 2D (4,4)-sql net with encapsulated imdn anions in the grids represented with space-filling mode.
Fig. 2 (a) ORTEP representation of 2 showing the local coordination environment around Co(II) center with 50% thermal ellipsoid probability. Hydrogen atoms on C atoms have been omitted for clarity. (Symmetry codes: (i) −x + 1/2, y + 1/2, z; (ii) x + 1/2, −y − 1/2, z; (iii) −x + 1, −y, z). (b) Ball-and-Stick representation of the 2D (4,4)-sql net with encapsulated imdn anions in the grids represented with space-filling mode.

The most striking feature of 2 was disclosed by close inspection of the supramolecular networks formed between hydrogen-bonded water molecules and imdn anions. As shown in Fig. 3a, two imdn anions and four water molecules are hydrogen-bonded (2.713(4)–2.778(5) Å) to an unprecedented bag-like [(imdn)2(H2O)4] supramolecular cluster which is further tetrahedrally linked by its four neighbors through the O3W⋯N5 hydrogen bond (2.938(5) Å) to form the resulting 3D network. From the topology point, the [(imdn)2(H2O)4] supramolecular cluster can be seen as a four-connected node (Fig. 3b), as a result, the whole 3D hydrogen-bonded network is topologically similar to diamond, in which [(imdn)2(H2O)4] replaces adamantyl nucleus as super-C atom. The smallest subunit of this diamond network looks like a superadamantane which has a top-to-bottom length of 24.4818(9) Å, equivalent to crystallographic c-axis length, and consists of 60 molecules (20 imdn and 40 water) linked together by 72 hydrogen bonds (20 O–H⋯O and 52 N–H⋯O) (Fig. 3c). This large superadamantane gives the single diamond network huge void, which is filled by another identical net leading to 2-fold interpenetration (Fig. 3d). The distance between adjacent four-connected nodes belonging to two distinct diamond networks is ∼11.46 Å (Fig. S3). Notably, hydrogen bonds occur only within a particular diamond network but not between different networks. To the best of our knowledge, the diamond networks can be obtained by connecting tetrahedral centers such as Td-symmetry metallic or organic compounds. Particularly, self-complementary multiple hydrogen bonds have realized the construction of diamond networks based on tetrahedral carboxylic acid, pyridone, and diaminotriazine derivatives.35 However, most known hydrogen-bonded diamond networks obtained so far are homomolecular species2h and using binary supramolecular cluster to construct the multi-component organic diamond networks is still rare.36 A related example is a 1[thin space (1/6-em)]:[thin space (1/6-em)]2 adduct of tetrahedral tetrakis[4-(3-hydroxyphenyl)methane] and linear benzoquinone which are hydrogen-bonded to an elongated diamond network showing the largest known superadamantane unit and highest recorded 11-fold interpenetration.37


Ball-and-stick representation of [(imdn)2(H2O)4] supramolecular cluster. (b) Tetrahedral linking mode of the supramolecular cluster. (c) Formation of superadamantane framework in 2. (d) Two-fold interpenetrated diamond networks.
Fig. 3 Ball-and-stick representation of [(imdn)2(H2O)4] supramolecular cluster. (b) Tetrahedral linking mode of the supramolecular cluster. (c) Formation of superadamantane framework in 2. (d) Two-fold interpenetrated diamond networks.

It is worth stressing that water-imdn aggregations in 1 and 2 have the identical chemical composition with the same molecular formula of [(imdn)2(H2O)4]n, but they have different hydrogen-bonded networks, 1D tape and 3D 2-fold interpenetrated diamond network, belonging to a pair of isomers. The different water-imdn aggregations are strongly relevant to the environment of void created by the hosts. In 1, three bidentate chelating 2,2′-bpy ligands ligated one Co(II) to form mononuclear [Co(2,2′-bpy)3] units, which were packed in the crystal lattice to form 1D channel where accommodates the 1D [(imdn)2(H2O)4]n tape. In 2, bidentate bridging 4,4′-bpy ligands connected Co(II) to form a 2D (4,4)-sql net possesses nano-sized windows which are traversed by 2-fold interpenetrated hydrogen-bonded diamond networks (Fig. S4). These results demonstrate that the water-imdn aggregations form not only by a simple void-filling but also by somewhat templating effect, that is to say, the shape and size of the void somewhat determines the morphologies of the water-imdn aggregation. To the best of our knowledge, most supramolecular isomers refer to the coordination frameworks with or without consideration of the guest species,38 however, supramolecular isomeric hydrogen-bonded guests still received less attention.39

In summary, we observed two novel isomeric water-imdn aggregations in two different hosts. The water-imdn aggregation in 1 is a 1D tape containing an octamer water cluster, while a 3D 2-fold interpenetrated diamond network based on a supramolecular cluster was observed in 2. The results unambiguously unearth that different host structural motifs are responsible to the dissimilarity of two isomeric water-imdn aggregations.

Acknowledgements

This work was supported by the NSFC (Grant No. 90922014), the Shandong Natural Science Fund for Distinguished Young Scholars (2010JQE27021), the NSF of Shandong Province (BS2009L007, Y2008B01), and Independent Innovation Foundation of Shandong University (2010JQ011), the International Scientific and Technological Cooperation Projects of Shanxi Province (No: 2011081022).

References

  1. (a) T. Steiner, Angew. Chem., Int. Ed., 2002, 41, 48 CrossRef CAS; (b) T. Steiner and G. R. Desiraju, Chem. Commun., 1998, 891 RSC; (c) M. J. J. Zawarotko, Chem. Soc. Rev., 1994, 23, 283 RSC; (d) K. V. Domasevitch, I. Boldog, J. C. Daran, A. N. Chernega, E. B. Rusanov and H. Krautscheid, Cryst. Growth Des., 2009, 9, 2895 CrossRef; (e) K. V. Domasevitch, I. Boldog, E. B. Rusanov, A. N. Chernega and J. Sieler, Angew. Chem., Int. Ed., 2001, 40, 3435 CrossRef; (f) I. Boldog, E. B. Rusanov, J. Sieler and K. V. Domasevitch, New J. Chem., 2004, 28, 756 RSC; (g) I. A. Baburina and V. A. Blatov, Acta Crystallogr., Sect. B: Struct. Sci., 2007, B63, 791 CrossRef; (h) B. Li, R.-J. Wei, J. Tao, R.-B. Huang, L.-S. Zheng and Z. J. Zheng, J. Am. Chem. Soc., 2010, 132, 1558 CrossRef CAS.
  2. (a) B. R. Bhogala, P. Vishweshwar and A. Nangia, Cryst. Growth Des., 2002, 2, 325 CrossRef CAS; (b) B. Olenik, T. Smolka, R. Boese and R. Sustmann, Cryst. Growth Des., 2003, 3, 183 CrossRef CAS; (c) B. R. Bhogala and A. Nangia, Cryst. Growth Des., 2003, 3, 547 CrossRef CAS; (d) C. B. Aakeröy, A. M. Beatty and B. A. Helfrich, J. Am. Chem. Soc., 2002, 124, 14425 CrossRef; (e) P. Vishweshwar, A. Nangia and V. M. Lynch, Cryst. Growth Des., 2003, 3, 783 CrossRef CAS; (f) R. D. B. Walsh, M. W. Bradner, S. G. Fleischman, L. A. Morales, B. Moulton, N. Rodríguez-Hornedo and M. J. Zaworotko, Chem. Commun., 2003, 186 RSC; (g) K. Biradha and G. Mahata, Cryst. Growth Des., 2005, 5, 61 CrossRef CAS; (h) I. A. Baburin, V. A. Blatov, L. Carlucci, G. Ciani and D. M. Proserpio, Cryst. Growth Des., 2008, 8, 519 CrossRef CAS; (i) E. V. Alexandrov, V. A. Blatov, A. V. Kochetkov and D. M. Proserpio, CrystEngComm, 2011, 13, 3947 RSC; (j) I. A. Baburin, V. A. Blatov, L. Carlucci, G. Ciani and D. M. Proserpio, CrystEngComm, 2008, 10, 1822 RSC.
  3. O. Ermer, J. Am. Chem. Soc., 1988, 110, 3747 CrossRef CAS.
  4. P. Ball, H2O: A Biography of Water; Weidenfeld & Nicolson, London, 1999 Search PubMed.
  5. (a) K. Liu, M. G. Brown, C. Carter, R. J. Saykally, J. K. Gregory and D. C. Clary, Nature, 1996, 381, 501 CrossRef CAS; (b) K. Nauta and R. E. Miller, Science, 2000, 287, 293 CrossRef CAS; (c) J. M. Ugalde, I. Alkorta and J. Elguero, Angew. Chem., Int. Ed., 2000, 39, 717 CrossRef CAS; (d) R. Ludwig, Angew. Chem., Int. Ed., 2001, 40, 1808 CrossRef CAS; (e) J. Kim, D. Majumdar, H. M. Lee and K. S. Kim, J. Chem. Phys., 1999, 110, 9128 CrossRef CAS; (f) K. Liu, J. D. Cruzan and R. J. Saykally, Science, 1996, 271, 929 CAS; (g) P. Rodríguez-Cuamatzi, G. Vargas-Díaz and H. Höpfl, Angew. Chem., Int. Ed., 2004, 43, 3041 CrossRef; (h) R. Natarajan, J. P. H. Charmant, A. G. Orpen and A. P. Davis, Angew. Chem., Int. Ed., 2010, 49, 5125 CrossRef CAS.
  6. (a) L. S. Long, Y. R. Wu, R. B. Huang and L. S. Zheng, Inorg. Chem., 2004, 43, 3798 CrossRef CAS; (b) M. Zuhayra, W. U. Kampen, E. Henze, Z. Soti, L. Zsolnai, G. Huttner and F. A. Oberdorfer, J. Am. Chem. Soc., 2006, 128, 424 CrossRef CAS.
  7. (a) S. K. Ghosh and P. K. Bharadwaj, Inorg. Chem., 2003, 42, 8250 CrossRef CAS; (b) D. Sun, Z. H. Wei, C. F. Yang, D. F. Wang, N. Zhang, R. B. Huang and L. S. Zheng, CrystEngComm, 2011, 13, 1591 RSC; (c) R. Custelcean, C. Afloroaei, M. Vlassa and M. Polverejan, Angew. Chem., Int. Ed., 2000, 39, 3094 CrossRef CAS; (d) R. Luna-García, B. M. Damián-Murillo, V. Barba, H. Höpfl, H. I. Beltrán and L. S. Zamudio-Rivera, Chem. Commun., 2005, 5527 RSC; (e) S. Kohmoto, S. Okuyama, N. Yokota, M. Takahashi, K. Kishikawa, H. Masu and I. Azumaya, Cryst. Growth Des., 2011, 11, 3698 CrossRef CAS.
  8. (a) M. H. Mir and J. J. Vittal, Angew. Chem., Int. Ed., 2007, 46, 5925 CrossRef CAS; (b) M. H. Mir and J. J. Vittal, Cryst. Growth Des., 2008, 8, 1478 CrossRef; (c) D. Sun, H.-R. Xu, C.-F. Yang, Z.-H. Wei, N. Zhang, R.-B. Huang and L.-S. Zheng, Cryst. Growth Des., 2010, 10, 4642 CrossRef CAS.
  9. (a) D. Sun, D.-F. Wang, X.-G. Han, N. Zhang, R.-B. Huang and L.-S. Zheng, Chem. Commun., 2011, 47, 746 RSC; (b) S. Khatua, J. Kang, J. O. Huh, C. S. Hong and D. G. Churchill, Cryst. Growth Des., 2010, 10, 327 CrossRef CAS; (c) C. Maxim, L. Sorace, P. Khuntia, A. M. Madalan, V. Kravtsov, A. Lascialfari, A. Caneschi, Y. Journaux and M. Andruh, Dalton Trans., 2010, 39, 4838 RSC; (d) W. B. Blanton, S. Gordon-Wylie, G. R. Clark, K. D. Jordon, T. J. Wood, U. Geiser and T. J. Collins, J. Am. Chem. Soc., 1999, 121, 3551 CrossRef CAS; (e) R. J. Doedens, E. Yohannesb and M. I. Khanb, Chem. Commun., 2002, 62 RSC; (f) J. L. Atwood, L. J. Barbour, T. J. Ness, C. J. Raston and P. L. Raston, J. Am. Chem. Soc., 2001, 123, 7192 CrossRef CAS; (g) B. Q. Ma, H. L. Sun and S. Gao, Chem. Commun., 2005, 2336 RSC; (h) S. K. Ghosh and P. K. Bharadwaj, Eur. J. Inorg. Chem., 2005, 4886 CrossRef CAS.
  10. (a) D. Sun, D.-F. Wang, N. Zhang, R.-B. Huang and L.-S. Zheng, Cryst. Growth Des., 2010, 10, 5031 CrossRef CAS; (b) S. K. Ghosh and P. K. Bharadwaj, Inorg. Chem., 2005, 44, 5553 CrossRef CAS.
  11. (a) L. J. Barbour, G. W. Orr and J. L. Atwood, Chem. Commun., 2000, 859 RSC; (b) M. Yoshizawa, T. Kusukawa, M. Kawano, T. Ohhara, I. Tanaka, K. Kurihara, N. Niimura and M. Fujita, J. Am. Chem. Soc., 2005, 127, 2798 CrossRef CAS.
  12. (a) B.-Q. Ma, H.-L. Sun and S. Gao, Angew. Chem., Int. Ed., 2004, 43, 1374 CrossRef CAS; (b) S. K. Ghosh and P. K. Bharadwaj, Angew. Chem., Int. Ed., 2004, 43, 3577 CrossRef CAS; (c) X. Wang, H. Lin, B. Mu, A. Tian and G. Liu, Dalton Trans., 2010, 39, 6187 RSC; (d) S. Neogi, G. Savitha and P. K. Bharadwaj, Inorg. Chem., 2004, 43, 3771 CrossRef CAS; (e) H. H. Song and B. Q. Ma, CrystEngComm, 2007, 9, 625 RSC; (f) F. Dai, H. He and D. Sun, J. Am. Chem. Soc., 2008, 130, 14064 CrossRef CAS.
  13. S. K. Ghosh, J. Ribas, M. S. E. Fallah and P. K. Bharadwaj, Inorg. Chem., 2005, 44, 3856 CrossRef CAS.
  14. (a) S. K. Ghosh and P. K. Bharadwaj, Inorg. Chem., 2004, 43, 6887 CrossRef CAS; (b) Y. Bi, W. Liao, H. Zhang and D. Li, CrystEngComm, 2009, 11, 1213 RSC.
  15. (a) K. Raghuraman, K. K. Katti, L. J. Barbour, N. Pillarsetty, C. L. Barnes and K. V. Katti, J. Am. Chem. Soc., 2003, 125, 6955 CrossRef CAS; (b) X. Luan, Y. Chu, Y. Wang, D. Li, P. Liu and Q. Z. Shi, Cryst. Growth Des., 2006, 6, 812 CrossRef CAS.
  16. R. L. Sang and L. Xu, CrystEngComm, 2010, 12, 1377 RSC.
  17. (a) A. Mukherjee, M. K. Saha, M. Nethaji and A. R. Chakravarty, Chem. Commun., 2004, 716 RSC; (b) Z. Fei, D. Zhao, T. J. Geldbach, R. Scopelliti, P. J. Dyson, S. Antonijevic and G. Bodenhausen, Angew. Chem., Int. Ed., 2005, 44, 5720 CrossRef CAS; (c) B. K. Saha and A. Nangia, Chem. Commun., 2005, 3024 RSC; (d) Y. Cui, M. L. Cao, L. F. Yang, Y. L. Niu and B. H. Ye, CrystEngComm, 2008, 10, 1288 RSC; (e) R. Natarajan, J. P. H. A. Charmant, G. Orpen and A. P. Davis, Angew. Chem., Int. Ed., 2010, 49, 5125 CrossRef CAS; (f) D. Sun, D.-F. Wang, N. Zhang, F.-J. Liu, H.-J. Hao, R.-B. Huang and L.-S. Zheng, Dalton Trans., 2011, 40, 5677 RSC.
  18. (a) X. F. Shi, H. B. Song, L. He and W. Q. Zhang, CrystEngComm, 2009, 11, 542 RSC; (b) M. Tadokoro, S. Fukui, T. Kitajima, Y. Nagao, S. Ishimaru, H. Kitagawa, K. Isobee and K. Nakasuji, Chem. Commun., 2006, 1274 RSC; (c) R. Custelcean, C. Afloroaei, M. Vlassa and M. Polverejan, Angew. Chem., Int. Ed., 2000, 39, 3094 CrossRef CAS.
  19. (a) C. Janiak, T. G. Scharamann and S. A. Mason, J. Am. Chem. Soc., 2002, 124, 14010 CAS; (b) N. S. Oxtoby, A. J. Blake, N. R. Champness and C. Wilson, Chem.–Eur. J., 2005, 11, 4643 CrossRef CAS; (c) Z. F. Fei, T. J. Geldbach, D. B. Zhao, R. Scopelliti and P. J. Dyson, Inorg. Chem., 2005, 44, 5200 CrossRef CAS; (d) P. Rodríguez-Cuamatzi, G. Vargas-Díaz and H. Höpfl, Angew. Chem., Int. Ed., 2004, 43, 3041 CrossRef; (e) J. P. Zhang, X. C. Huang, Y. Y. Lin and X. M. Chen, Inorg. Chem., 2005, 44, 3146 CrossRef CAS; (f) X. J. Luan, Y. C. Chu, Y. Y. Wang, D. S. Li, P. Liu and Q. Z. Shi, Cryst. Growth Des., 2006, 6, 812 CrossRef CAS; (g) P. S. Lakshminarayanan, E. I. Suresh and P. Ghost, J. Am. Chem. Soc., 2005, 127, 13132 CrossRef CAS; (h) A. H. Yang, H. Zhang, H. L. Gao, W. Q. Zhang, L. He and J. Z. Cui, Cryst. Growth Des., 2008, 8, 3354 CrossRef CAS.
  20. (a) R. Carballo, B. Covelo, C. Lodeiro and E. M. Vázquez-López, CrystEngComm, 2005, 7, 294 RSC; (b) R. Carballo, B. Covelo, N. Fernández-Hermida, E. García-Martínez, A. B. Lago, M. Vázquez and E. M. Vázquez-López, Cryst. Growth Des., 2006, 6, 629 CrossRef CAS; (c) C. H. Li, K. L. Huang, J. M. Dou, Y. N. Chi, Y. Q. Xu, L. Shen, D. Q. Wang and C. W. Hu, Cryst. Growth Des., 2008, 8, 3141 CrossRef CAS.
  21. (a) P. S. Lakshminarayanan, E. Suresh and P. Ghosh, Angew. Chem., Int. Ed., 2006, 45, 3807 CrossRef CAS; (b) J. R. Butchard, O. J. Curnow, D. J. Garrett and R. G. A. R. Maclagan, Angew. Chem., Int. Ed., 2006, 45, 7550 CrossRef CAS; (c) X. B. Wang, X. Yang, J. B. Nicholas and L. S. Wang, Science, 2001, 294, 1322 CrossRef CAS; (d) W. H. Robertson, E. G. Diken, E. A. Price, J. W. Shin and M. A. Johnson, Science, 2003, 299, 1367 CrossRef CAS.
  22. (a) R. Custelcean and M. G. Gorbunova, J. Am. Chem. Soc., 2005, 127, 16362 CrossRef CAS; (b) C. K. Lam, F. Xue, J. P. Zhang, X. M. Chen and T. C. W. Mak, J. Am. Chem. Soc., 2005, 127, 11536 CrossRef CAS; (c) M. A. Hossain, P. Morehouse, D. Powell and K. Bowman-James, Inorg. Chem., 2005, 44, 2143 CrossRef CAS; (d) P. S. Lakshminarayanan, D. K. Kumar and P. Ghosh, Inorg. Chem., 2005, 44, 7540 CrossRef CAS; (e) S. Bartoli, C. Bazzicalupi, S. Biagini, L. Borsari, A. Bencini, E. Faggi, C. Giorgi, C. Sangregorio and B. Valtancoli, Dalton Trans., 2009, 1223 RSC; (f) Y. Li, L. Jiang, X. L. Feng and T. B. Lu, Cryst. Growth Des., 2008, 8, 3689 CrossRef CAS; (g) A. Bakhoda, H. R. Khavasi and N. Safari, Cryst. Growth Des., 2011, 11, 933 CrossRef CAS; (h) D. Liu, H.-X. Li, Z.-G. Ren, Y. Chen, Y. Zhang and J.-P. Lang, Cryst. Growth Des., 2009, 9, 4562 CrossRef CAS.
  23. X. L. Wang, C. Qin and E. B. Wang, Cryst. Growth Des., 2006, 6, 439 CAS.
  24. (a) D. Sun, N. Zhang, Q.-J. Xu, G.-G. Luo, R.-B. Huang and L.-S. Zheng, J. Mol. Struct., 2010, 969, 176 CrossRef CAS; (b) G.-G. Luo, H.-B. Xiong and J.-C. Dai, Cryst. Growth Des., 2011, 11, 507 CrossRef CAS.
  25. T. Hu, W. Bi, X. Hu, X. Zhao and D. Sun, Cryst. Growth Des., 2010, 10, 3324 CAS.
  26. B. L. V. Prasad, H. Sato, T. Enoki, S. Cohen and T. P. Radhakrishnan, J. Chem. Soc., Dalton Trans., 1999, 25 RSC.
  27. N. E. Brese and M. O'Keeffe, Acta Crystallogr., Sect. B: Struct. Sci., 1991, B47, 192 CrossRef CAS.
  28. (a) D. Maspoch, D. Ruiz-Molina, K. Wurst, G. Vaughan, N. Domingo, J. Tejada, C. Rovira and J. Veciana, CrystEngComm, 2004, 6, 573 RSC; (b) D. J. Szalda, C. Creutz, D. Mahajan and N. Sutin, Inorg. Chem., 1983, 22, 2372 CrossRef CAS; (c) R. Sieber, S. Decurtins, H. Stoeckli-Evans, C. Wilson, D. Yufit, J. A. K. Howard, S. C. Capelli and A. Hauser, Chem.–Eur. J., 2000, 6, 361 CrossRef CAS.
  29. (a) Y.-G. Li, Y. Lu, G.-Y. Luan, E.-B. Wang, Y.-B. Duan, C.-W. Hu, N.-H. Hu and H.-Q. Jia, Polyhedron, 2002, 21, 2601 CrossRef CAS; (b) C. Sun, E. Wang, D. Xiao, H. An and L. Xu, J. Mol. Struct., 2005, 741, 149 CrossRef CAS.
  30. (a) M. C. Etter, Acc. Chem. Res., 1990, 23, 120 CrossRef CAS; (b) J. Bernstein, R. E. Davis, L. Shimoni and N.-L. Chang, Angew. Chem., Int. Ed. Engl., 1995, 34, 1555 CrossRef CAS.
  31. D. Eisenberg and W. Kauzmann, The Structure and Properties of Water, Oxford University Press: Oxford, UK, 1969 Search PubMed.
  32. L. J. Barbour, G. W. Orr and J. L. Atwood, Nature, 1998, 393, 671 CrossRef CAS.
  33. A. H. Narton, W. E. Thiessen and L. Blum, Science, 1982, 17, 1033 Search PubMed.
  34. G. J. McManus, J. J. Perry, M. Perry, B. D. Wagner and M. J. Zaworotko, J. Am. Chem. Soc., 2007, 129, 9094 CrossRef CAS.
  35. (a) O. Ermer and A. Eling, Angew. Chem., Int. Ed. Engl., 1988, 27, 829 CrossRef; (b) M. Simard, D. Su and J. D. Wuest, J. Am. Chem. Soc., 1991, 113, 4696 CrossRef CAS; (c) P. Brunet, M. Simard and J. D. Wuest, J. Am. Chem. Soc., 1997, 119, 2737 CrossRef CAS.
  36. (a) D. S. Reddy, D. C. Craig and G. R. Desiraju, J. Am. Chem. Soc., 1996, 118, 4090 CrossRef CAS; (b) A. Jayaraman, V. Balasubramaniam and S. Valiyaveettil, Cryst. Growth Des., 2005, 5, 1575 CrossRef CAS; (c) S. Roy, G. Mahata and K. Biradha, Cryst. Growth Des., 2009, 9, 5006 CrossRef CAS.
  37. D. S. Reddy, T. Dewa, K. Endo and Y. Aoyama, Angew. Chem., 2000, 112, 4436 CrossRef.
  38. (a) T. L. Hennigar, D. C. MacQuarrie, P. Losier, R. D. Rogers and M. J. Zaworotko, Angew. Chem., Int. Ed. Engl., 1997, 36, 972 CrossRef CAS; (b) B. Moulton and M. J. Zaworotko, Chem. Rev., 2001, 101, 1629 CrossRef CAS; (c) S.-S. Chen, M. Chen, S. Takamizawa, P. Wang, G.-C. Lv and W.-Y. Sun, Chem. Commun., 2011, 47, 4902 RSC; (d) D. Sun, S. Ma, J. M. Simmons, J.-R. Li, D. Yuan and H.-C. Zhou, Chem. Commun., 2010, 46, 1329 RSC; (e) J.-P. Zhang, X.-L. Qi, C.-T. He, Y. Wang and X.-M. Chen, Chem. Commun., 2011, 47, 4156 RSC; (f) J.-P. Zhang, X.-C. Huang and X.-M. Chen, Chem. Soc. Rev., 2009, 38, 2385 RSC; (g) Z. Zhang, L. Wojtas and M. J. Zaworotko, Cryst. Growth Des., 2011, 11, 1441 CrossRef CAS.
  39. (a) A. Nangia, Acc. Chem. Res., 2008, 41, 595 CrossRef CAS; (b) V. S. S. Kumar, A. Addlagatta, A. Nangia, W. T. Robinson, C. K. Broder, R. Mondal, I. R. Evans, J. A. K. Howard and F. H. Allen, Angew. Chem., Int. Ed., 2002, 41, 3848 CrossRef CAS.

Footnotes

Electronic Supplementary Information (ESI) available: The synthesis of complexes 1-2, selected bond lengths and angles, TGA curve and X-ray crystallographic data. CCDC 838340-838341. See DOI:10.1039/c1ra00695a.
Crystal data for 1: C40H34CoN14O4, fw = 833.74 g mol−1, monoclinic, space group P21/c, Z = 4, T = 173(2)K, a = 9.8648(9), b = 29.440(2), c = 13.9210(13) Å, β = 94.890(2), V = 4028.(6)2 Å3, Dc = 1.375 g cm−3, R1 = 0.0423, wR2 = 0.0918, μ = 0.486 mm−1, S = 1.013. Crystal data for 2: C30H26CoN12O4, fw = 677.56 g mol−1, tetragonal, space group I41cd, Z = 8, T = 173(2)K, a = b = 16.2028(3), c = 24.4818(9) Å, V = 6427.2(3) Å3, Dc = 1.400 g cm−3, R1 = 0.0372, wR2 = 0.0743, μ = 0.590 mm−1, S = 0.988. For crystallographic data in CIF or other electronic format see DOI:10.1039/c1ra00695a.

This journal is © The Royal Society of Chemistry 2011
Click here to see how this site uses Cookies. View our privacy policy here.