Issue 9, 2010

Power struggles in peptide-amphiphile nanostructures

Abstract

Inspired by the ubiquitous functions fulfilled by native proteins, the self-assembly of peptide amphiphiles (PAs) holds much promise for the creation of functional nanostructures. Typically, PAs are constructed by conjugating blocks of very different character: a hydrophilic peptide segment with a hydrophobic element (an alkyl chain, lipid, polymer or polypeptide). The resulting amphiphilicity governs the self-assembly process in aqueous solutions. This self-assembly process is guided by attractive forces (for example hydrophobic interactions, hydrogen bonding, electrostatic attraction) and repulsive forces (for example electrostatic repulsion, mechanical forces). The balance between these forces is responsible for the secondary structure of the peptide segment, and furthermore the size and shape of the assemblies that are formed. A result of PA self-assembly is that the properties of the peptide segment can be altered, as it is a general observation that peptides are more likely to exhibit a well-defined secondary structure at an interface (e.g. the corona of a micelle) than they are in solution. This characteristic of peptides can be exploited to give nanostructures with well-defined properties. The art of controlled PA self-assembly consists of carefully combining all the inter- and intramolecular forces to arrive at a material which is both structurally well-defined and has controllable functionalities. In this tutorial review the forces that act within PA nanostructures are discussed, that is, the effect of the hydrophobic block and peptide secondary structure on each other as well as on the aggregate as a whole. At the end of the review, a short section is devoted to the applications of these PA nanostructures.

Graphical abstract: Power struggles in peptide-amphiphile nanostructures

Article information

Article type
Tutorial Review
Submitted
29 Mar 2010
First published
20 Jul 2010

Chem. Soc. Rev., 2010,39, 3434-3444

Power struggles in peptide-amphiphile nanostructures

F. Versluis, H. R. Marsden and A. Kros, Chem. Soc. Rev., 2010, 39, 3434 DOI: 10.1039/B919446K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements