John
Collins
a and
Abraham P.
Lee
*b
aDepartment of Biomedical Engineering, University of California at Irvine, Irvine, CA, USA. E-mail: collins@uci.edu; Fax: (949) 824 1727; Tel: (949) 824 9876
bDepartment of Biomedical Engineering and Department of Mechanical & Aerospace Engineering, University of California at Irvine, Irvine, CA, USA. E-mail: aplee@uci.edu; Fax: (949) 824 1727; Tel: (949) 824 9691
First published on 11th November 2003
A new flow transducer for measuring the flow rate of a conducting fluid in a microchannel is reported. In this paper, the measure of flow of such fluid under laminar flow conditions based on the change of electrical admittance is established with the aid of a pair of electrodes parallel to the line of flow in a glass–PDMS microfluidic device. This flow sensor is simple in design and can be integrated to most of the microfluidic platforms. The effect of flow rate of the electrolyte, the frequency of the applied ac voltage, the voltage applied across the detector electrodes, and the conductivity of the electrolyte are varied to optimize for high sensitivity. The optimized values are then used to demonstrate the measurements of very low flow rates (<1 nL s−1). This flow sensor can be extended towards the measurement of chemical and biochemical buffers and reagents.
Flow sensors based on sensing the temperature difference between two points in the microchannel2–4 can sense very low flows. However, such flow sensors require a complicated design and the integration of the heater, temperature sensors and membrane shielding is difficult to implement. Moreover, the sensitivity and accuracy of the flow sensors depend on the environment associated in the heat transfer. Most other methods are not capable of measuring very low flow rates. We consider flow sensing by directly measuring the electrical admittance of the fluid using two surface electrodes.
In electrolytes flowing in a microchannel under laminar flow conditions, a parabolic velocity profile exists and so the ions in the middle of the channels travel faster than those near the walls. This results in the redistribution of ions within the electric double layer (EDL) formed in the channel.13 The ac voltage across the channel electrodes (Fig. 3) drives the ions back and forth across the electrodes. The ionic redistribution develops electrokinetic effects and contributes to change in electric admittance. Thus the flow of fluid is very sensitive to the admittance across microelectrodes14,15 in the flow channels, and measuring the increase in admittance precisely accounts for the flow rate. Our flow sensor operating with optimized electric parameters can be efficient and accurate for precise values of flows. This method is relatively simple and suitable for most of the chemical and biochemical microfluidic applications since most of the reagents used are electrolytes. In this paper, we present such a flow sensor based on the measurement of electrical admittance.
![]() | ||
Fig. 1 The equivalent circuit for the channel and electrodes flow sensor cell. The solution in the channel offers a parallel resistive (Rs) and capacitive (Cs) impedance while the electrodes by themselves offer serial capacitive (Ce) impedance with the solution. |
For an electrochemical oxidation of a species A to A+ in a microchannel, the convective–diffusive equation for mass transport under steady state conditions is given by eqn. (1):
![]() | (1) |
![]() | (2) |
![]() | (3) |
![]() | ||
Fig. 2 (a) Layout design of fabricated electrodes and the wiring for measuring the current flow. (b) Cross-section of fabricated flow sensor along the electrodes at AA′ in (a). |
![]() | ||
Fig. 3 Experimental setup for measuring current increase due to flow of electrolytes (standard resistance R = 1 kΩ, AC is the ac signal source, NI DAQ is PCI 6024E). |
Sodium hydroxide (NaOH) solutions with conductivities ranging from 5 to 200 mS cm−1 (corresponding to 0.01 M to 1 M) are prepared with NaOH pellets bought from Fisher Scientific. The concentration of the NaOH solution is chosen at 0.8 M and experiments are carried out for frequency and current response. Microfluidic flow is maintained at a constant flow rate using a Harvard Picoplus Syringe pump. An ac signal of rms voltage 0.05 V is applied in the circuit by a signal generator. The rms voltage across the parallel microelectrodes increases to 0.04 V after wetting the channel (with no flow of electrolyte through it). With some trials of experiments it was found that the current values grow and decay exponentially and stay constant after 1 min. In order to keep the uniformity in all the experiments, the fluid is allowed to flow in the channel for 1 min and the flow is switched off for 1 min before any other measurement. The current flowing across the pair of electrodes is calculated from the measured voltage across the standard resistor of 1 kΩ. The current exponentially grows when the flow is switched on and then stays constant. After switching off the flow, the current again decays exponentially until it reaches a constant value. The difference between two constant values of current gives the current increase due to flow and is measured in all the experiments.
![]() | ||
Fig. 4 Flow sensor response with flow rate. (a) Instantaneous value of RMS current which depends on flow rate. Every 1 min the flow is turned on in steps of 5 µL min−1 starting from 10 µL min−1 with no flow for every 1 min. The numbers above the plateaus represent the flow rates in µL min−1. (b) RMS current increase due to flow is plotted for the flow rates. |
In another experiment, the frequency of the ac signal is swept from 10 Hz to 5 kHz in steps of 10 Hz in the 10–100 Hz range, 100 Hz in the 100–1000 range and 1 kHz in the 1–5 kHz range. Since the equivalent circuit of the microchannel is capacitive dominant, the base current (with no flow) increases with frequency. At each frequency, the measurement of current before and after flow is brought to a constant value by waiting for 1 min. The redistribution of ions in the channel causes an increase or decrease of current. It is observed that the admittance is maximized at 500 Hz as shown in Fig. 5. This is due to the competitive capacitive effects of the Ce and Cs as described earlier. It is to be understood that the efficiency of the flow sensor is found to be high at this frequency.
![]() | ||
Fig. 5 Frequency response of the flow sensor for different applied frequency. The squares are the static (no flow) response in the frequency sweep and the circles are the increase in RMS current due to a flow of 10 µL min−1. |
The ac voltage applied has a great influence on the flow driven current. Higher voltage increases the diffusive region in the channel which in turn decreases the diffusive capacitance (Cs). But the contribution of the capacitance at outer Helmholtz plane becomes more prominent and the admittance increases. Furthermore, at voltages more than 400 mV, partial electrolysis takes place and the effective current decreases with voltage. Fig. 6 shows the optimization of voltage of the ac signal used in the flow sensor. The V–I characteristic of the flow sensor (with no flow) shows a parabolic response similar to the conductivity measurement of electrolytes. Thus the flow sensor is tuned for the ac voltage of 400 mV.
![]() | ||
Fig. 6 V–I characteristics of the flow sensor. The squares are the RMS current for no flow and the circles are for a flow of 10 µL min−1. The optimization is to find the RMS voltage for which the sensor is more sensitive for the flow of fluid. |
NaOH solution of different concentrations were studied in the flow sensor. It is found that there is an optimum value of the concentration of the electrolyte for the flow sensor to be at its maximum efficiency. Fig. 7 shows that the concentration of the flow sensor is optimized at 0.2 M. At lower concentrations the admittance increases with more numbers of ions in the fluid system. When the ionic concentration is too large the flow of fluid does not further increase the admittance because of inter-ionic interactions. However generally the buffers or electrolytes used in microfluidic application are in mM concentration and the optimization of concentration is not necessary.
![]() | ||
Fig. 7 Dependence of concentration of the electrolyte to the flow. The square, circle and triangles are for 300, 500 and 700 Hz respectively of the ac voltage applied. |
Using the optimized electrical parameters (f = 500 Hz, V = 0.4 V and concentration = 0.2 M), the flow sensor is designed for measuring very low values of flow rate starting at 0.05 µL min−1 (<1 nL s−1). The response shows a cube root behavior even at very low flow rates as shown in Fig. 8. The sensitivity at these optimizations is 5.2 × 10−4 mA/(µL/min). In another experiment, fluorescent beads of diameter 2.5 µm are mixed with NaOH and sent through the channel. The motion of the beads at the flow rates .05, 0.1, 0.2, 0.4, and 0.6 µL min−1 are recorded using optical video microscopy at 30, 60, 120, 250, 250 frames per s respectively, and the beads at a particular stream are analyzed and averaged to predict the velocity response at very low flow rates. The sensor results are compared with the velocity of beads (the symbol * in Fig. 8) and shows similar response. Thus the calibration of the flow sensor is accomplished using the velocity measurements with beads.
![]() | ||
Fig. 8 Flow sensor response at very low flow rates. (a) The instantaneous current values with the variation and switching of flows. The results of (a) are re-plotted in (b). Also shown the right axis of (b) is the velocity of beads at different flow rates of the fluid. (The peaks in (a) correspond to the flow rate values labelled.) |
Though this paper presents NaOH as the fluid used for demonstration of this flow sensor, different electrolytes and biochemical buffers have been tested for the sensitivity. CaCl2, KCl and KOH (from Fisher Scientific) and a concentration of 0.8 M is used. Dulbecco's Phosphate Buffered Saline (D-PBS) solution and Modified Eagle Medium (D-MEM) (high glucose) buffer are bought from GIBCO and are used in the same concentration. Optimization of frequency of the ac signal alone is done for the fluids at 50 mV rms applied voltage. The typical increase of currents is measured for the flow rate of 10 µL min−1 and the sensitivity values are tabulated in Table 1. These buffers and reagents are used in chemical and biochemical experiments. When these fluids are used in lab-on-chips, the flow rates of the fluids can be determined using the flow sensor we described in this paper. It is to be noted that though we optimized the conductivity of the electrolyte for this study, it is not required and therefore the sensor can be used with arbitrary concentrations. Conductivity depends on the constituent materials and changing the conductivity of certain buffers/reagents will alter the biochemical reaction.
No. | Electrolytes/buffers | Sensitivity (mA/(µL/min)) |
---|---|---|
1 | CaCl2 | 1.2E-4 |
2 | KCl | 1.5E-4 |
3 | KOH | 2.8E-4 |
4 | D-PBS | 1.0E-4 |
5 | D-MEM | 3.2E-4 |
The principle of measuring electrical admittance laid out in this paper can be used to decipher parameters other than flow. There have been several reports21,22 on the detection of biomelecules and cells in lab-on-chip devices based on impedance spectroscopy of the solution. In these methods, the measurements are done with static fluids. By measuring impedance change due to different conditions of flow it is possible to investigate the constituents of the solution. In the future, impedance spectroscopy based on differential flow can thus be used to characterize electrolytes including biomolecules, cells or microbes under laminar flow.
This journal is © The Royal Society of Chemistry 2004 |