Kwan-Ming
Ng
a,
Wai-Kee
Li
*a,
Siu-Kwan
Wo
b,
Chun-Wai
Tsang
*b and
Ngai-Ling
Ma
*c
aDepartment of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
bDepartment of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
cMaterials and Industrial Chemistry Program, Institute of High Performance Computing, 1 Science Park Road, #01-01, The Capricorn, Singapore Science Park II, Singapore 117528
First published on 1st December 2003
The interaction of Ag+ with amides was studied through prototypical systems mimicking the binding of Ag+ to the peptide bond. The Ag+ binding affinities (energies) of formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide were determined by the mass spectrometric kinetic method to be 162, 179, 193, 181, 198 and 208 kJ mol−1, respectively, with an estimated uncertainty of ±11 kJ mol−1. The relative stability of different possible Ag+ binding modes was investigated effectively at the ab initio CCSD(T)/[HW(f),6-31+G(d)] level of theory. The absolute theoretical affinities are in good general agreement with the experimental values, even though calculated values tend to be too high by an average of 10 kJ mol−1. The theoretical results show that Ag+ binds preferentially to the amide carbonyl oxygen, whereas monodentate binding to the amino nitrogen, or bidentate binding to both oxygen and nitrogen, are about 40 to 60 kJ mol−1 less stable. Methyl substitution at the amide carbon and amino nitrogen enhances the Ag+ affinity by increasing the molecular polarizability of the amide. The effects of C-methyl and N-methyl substitution on Ag+ binding at the amide carbon and amino nitrogen are found to be significantly different and this difference is discussed.
Silver ion is found to bind strongly to amino acids6–8 and peptides.9–11 In peptides, the amide carbonyl oxygen of the peptide bond is one of the most common and preferred binding sites for Ag+.10 A recent theoretical study has shown that, for the Ag+-triglycine complex, Ag+ is preferentially tetracoordinated to the terminal amino nitrogen and the three amide carbonyl oxygens of the peptide backbone.11 Mass spectral fragmentation of Ag+-peptide complexes has been demonstrated to be useful in peptide sequencing.12,13 The competition among the different fragmentation pathways are determined, to a large extent, by the energetics of Ag+ binding to the different binding sites of the peptide.6–8,10
The Ag+ binding affinity of a ligand, L, is the enthalpy change, ΔH, of the dissociation reaction (1) at temperature T, typically at 0 K.
Ag+–L![]() ![]() ![]() ![]() | (1) |
The interaction of metal cations with amides has been studied with prototypical systems mimicking the binding of metals to the peptide bond.29–32 The Ag+ affinity of formamide was reported in a DFT study of small model ligands.26 Despite their biological and mass spectral relevance, the experimental Ag+ affinities of amides have not been studied. Here, we report the Ag+ binding affinities of a series of six amides, i.e., formamide (F), N-methylformamide (MF), N,N-dimethylformamide (DMF), acetamide (A), N-methylacetamide (MA) and N,N-dimethylacetamide (DMA), determined by the mass spectrometric kinetic method. In addition, we also report ab initio results on the relative stabilities of different possible Ag+ binding modes. The systematic study on a series of amides allows the effect of methyl substitution at the amide carbon and at the amide nitrogen (e.g., H–CONH2versus CH3–CONH2, and HCONH–H versus HCONH–CH3) on Ag+ binding affinity to be elucidated.
The theoretical basis, assumptions and the methodology of the mass spectrometric kinetic method have been reviewed recently,33,34 and only a brief outline is given here. For the competitive unimolecular dissociations of the Ag+ bound heterodimer complex between two ligands L1 and L2, [L1+
Ag
+
L2]+, to the Ag+ bound monomer complexes, [L1
+
Ag]+ and [L2
+
Ag]+
(reactions (2) and (3)), the natural logarithm of the relative rates of the competitive unimolecular dissociations, ln(k1/k2), can be equated to the natural logarithm of the ion intensity ratio, ln(I[L1+Ag]/I[L2+Ag]) by eqn. (4).
![]() | (4) |
![]() | (5) |
To measure the absolute Ag+ affinity of an unknown ligand (L1), the dissociation of its Ag+ bound heterodimer with a series of reference compounds (Ln) of known Ag+ affinities (e.g. L1=
acetamide and Ln
=
methyl-substituted benzenes in this study) have to be measured. If the unknown and reference compounds are structurally dissimilar, the ln(Q*1/Qn*) term is generally non-zero, but is usually expressed as an ‘apparent’ entropic term, Δ(ΔS)app/R, according to eqn. (6), where Δ(ΔS)app is the difference in entropies of activation for reactions (2) and (3). By drawing analogy with the thermodynamic relation, ΔG
=
ΔH
−
TΔS, eqn. (4) now becomes eqn. (7):
![]() | (6) |
![]() | (7) |
(ΔG)app![]() ![]() ![]() ![]() ![]() ![]() | (8) |
However, the (ΔG)app and 1/RTeff terms are in fact covariant so that the highly linear (ΔG)app/RTeffversus 1/RTeff
(second) plot in the original extended kinetic method could be an artifact of the data analysis. To remove this possible artifact, Armentrout suggested a statistical data treatment procedure:37 the ln(I[L1+Ag]+/I[Ln+Ag]+) term is first plotted against [ΔH[Ln+Ag]+−
ΔHavg], where ΔHavg is the average of ΔH values of the reference compounds (Ln). The slope of this plot, m, is −1/RTeff and the y-intercept, y0, is [(ΔG)app
−
ΔHavg]/RTeff. This is followed by a second plot of y0versus−m which yields a straight line with slope of [ΔH[L1+Ag]+
−
ΔHavg] and y-intercept of −Δ(ΔS)app/R, from which the unknown ΔH[L1+Ag]+ and Δ(ΔS)app can be determined. This statistical data treatment protocol recommended by Armentrout was adopted in the present study.
Alternatively, the [L1+
107Ag
+
L2]+ heterodimer was mass-selected by MS1 (the B-E sector mass analyser) and transferred to MS2 (the ion trap mass analyser) for low-energy CID (eV, laboratory scale) measurements. Typical operating conditions of the ion-trap CID experiments were: ion injection time 200 ms, activation RF voltage 0.55 V, activation qz at 0.25, activation time 15 ms, and helium buffer (collision gas) at 2.8
×
10−5 mbar (as measured by an ion gauge under the ion-trap chamber). Since the ion trap mass analyser was not heated, a small fraction of the dissociated Ag+ bound monomer complex [L1
+
Ag]+ and [L2
+
Ag]+ further reacted with trace moisture found inside the ion trap to yield the [L1
+
Ag
+
H2O]+ and [L2
+
Ag
+
H2O]+ cluster ions. The intensity of the cluster ion was combined (summed) with the intensity of the [L1
+
Ag]+ or [L2
+
Ag]+ ion to yield the I[L1+Ag]+/I[L2+Ag]+ intensity ratio.
The extended kinetic method measurements were carried out with a Quattro Ultima triple quadrupole tandem mass spectrometer (Micromass, Manchester, UK). The Ag+ bound heterodimers of an amide and reference methyl-substituted benzenes were generated from a mixture solution of the amide (final concentration: 2×
10−4
−
5
×
10−4 M), methyl-substituted benzenes (final concentration: 1
×
10−3
−
2
×
10−2 M) and silver nitrate (final concentration: 1
×
10−4 M) in methanol. Similar to the case of standard kinetic method measurements, the concentrations of the amide and methyl-substituted benzene in the solution were optimized within the stated concentration range to yield maximum heterodimer ion intensity. The solution was introduced into the ESI source at 12 μl min−1. Typical operating conditions were: ESI capillary voltage at 3.5 kV, source temperature at 75
°C, nebulizing and desolvation N2 gas flow rate at 500 L h−1, and declustering cone gas (N2) at 50 L h−1. The [amide
+
107Ag
+
(methyl-substituted benzene)]+ heterodimer formed was mass-selected by the first quadrupole mass analyser (MS1), and underwent low-energy CID (10 to 30 eV, laboratory scale) in the RF-only hexapole collision cell filled with argon gas (1.88
−
1.90
×
10−5 mbar, as measured by a Penning gauge in the analyzer region, corresponding to ∼30% attenuation of the selected parent ion intensity). Daughter ion (MS/MS) scanning was carried out with the second quadrupole mass analyser (MS2) at 250–300 Th per second.
For both high-energy and low-energy CID measurements, typically 50–100 scans were accumulated (summed) to yield a measurement of the ion intensity (peak height) ratio, and the average of 4–6 measurements were taken as the final result. The reproducibility of the ion intensity ratios were <±6%, <±10% and <±10%
(relative standard deviation, n=
4–6), and the logarithm of ratios were <±0.05, <±0.10 and <±0.10 for the high-energy N2-CID, ion trap-CID and triple quadrupole low-energy CID measurements, respectively.
E![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | (9) |
ΔH0![]() ![]() ![]() ![]() ![]() ![]() | (10) |
Reference compound | ΔH0a |
---|---|
a From refs. 25 and 44. The reference Ag+ affinities are theoretical values obtained at the CCSD(T)/[HW(f),6-31+G(d)] level of theory based on additivity scheme, eqn. (9). | |
Toluene (Tol) | 168 |
m-Xylene (m-Xy) | 181 |
1,3,5-Trimethylbenzene (1,3,5-Me3Bz) | 193 |
1,2,4,5-Tetramethylbenzene (1,2,4,5-Me4Bz) | 200 |
Pentamethylbenzene (Me5Bz) | 209 |
Hexamethylbenzene (Me6Bz) | 217 |
Amides | ΔH | Δ(ΔSAg+)app | Reference compound |
---|---|---|---|
a Weighted results with experimental uncertainties given as ±SD (90% confidence level) in the format of ref. 37. | |||
N-Methylformamide (MF) | 179.1![]() ![]() |
3.8![]() ![]() |
Tol, m-Xy, 1,3,5-Me3Bz, 1,2,4,5-Me4Bz |
Acetamide (A) | 180.7![]() ![]() |
2.8![]() ![]() |
Tol, 1,3,5-Me3Bz, 1,2,4,5-Me4Bz |
N,N-Dimethylformamide (DMF) | 193.1![]() ![]() |
−0.8![]() ![]() |
1,3,5-Me3Bz, 1,2,4,5-Me4Bz, Me5Bz, Me6Bz |
N-Methylacetamide (MA) | 198.2![]() ![]() |
0.4![]() ![]() |
1,3,5-Me3Bz, 1,2,4,5-Me4Bz, Me5Bz, Me6Bz |
N,N-Dimethylacetamide (DMA) | 207.6![]() ![]() |
−5.8![]() ![]() |
1,3,5-Me3Bz, 1,2,4,5-Me4Bz, Me5Bz, Me6Bz |
A typical ESI mass spectrum generated from a methanolic mixture solution of acetamide (A) and N-methylacetamide (MA) is shown in Fig. 1(a). The major peaks in the mass spectrum are due to the heterodimer ion, [MA+
Ag
+
A]+
(m/z 239 and 241), and the homodimer ions [2A
+
Ag]+
(m/z 225 and 227) and [2MA
+
Ag]+
(m/z 253 and 255). Due to the presence of 107Ag and 109Ag isotopes, each heterodimer or homodimer ion shows two peaks in the mass spectrum, but only the [MA
+
107Ag
+
A]+ heterodimer ion was chosen and mass-selected for the kinetic method measurements.
![]() | ||
Fig. 1 (a) Positive ESI mass spectrum of Ag+ cationized acetamide/N-methylacetamide complexes, and (b) High-energy (4.7 keV, laboratory scale) N2-CID mass spectrum of the [MA![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
The high-energy collision-induced dissociation (CID) mass spectrum (B/E-linked scan) of the Ag+ bound heterodimer complex, [MA+
107Ag
+
A]+, is shown in Fig. 1(b). The complex dissociates by competitive elimination of MA and A yielding two major fragment ions at m/z 166 ([A
+
107Ag]+) and m/z 180 ([MA
+
107Ag]+), respectively. The higher abundance of [MA
+
107Ag]+ suggests that MA has a higher Ag+ binding affinity than A. The natural logarithm of the ion intensity ratio [MA
+
107Ag]+/[A
+
107Ag]+ is equal to 0.58, which is directly proportional to the relative Ag+ affinity, Δ(ΔH)
=
ΔH[MA+Ag]+
−
ΔH[A+Ag]+. However, the relative Ag+ affinities of isobaric amides, such as MF/A and DMF/MA, cannot be compared directly by pairing them in a heterodimer complex. Hence, the relative Ag+ affinities of isobaric amides were determined from heterodimers in which these amides are paired up with other amides.
The experimentally measured ln(I[L1+Ag]+/I[L2+Ag]+) values (where L1, L2=
amides, and the 107Ag isotope is simply denoted by Ag hereafter) are summarized in a relative Ag+ affinity ladder shown in Fig. 2. The values under the heading ln(I[L1+Ag]+/I[DMF+Ag]+) are the cumulative average values of successive stair-steps, and are expressed relative to N,N-dimethylformamide (DMF). As shown in Fig. 2, the ln(I[L1+Ag]+/I[L2+Ag]+) values are internally consistent for all the Ag+ bound heterodimers of amides. For example, the sum of ln(I[L1+Ag]+/I[L2+Ag]+) values for the MF/F and MA/MF pairs is 0.60
+
0.71
=
1.31, while the sum of ln(I[L1+Ag]+/I[L2+Ag]+) values of the A/F and MA/A pairs is 0.76
+
0.58
=
1.34, with an absolute deviation of only 0.03. The internal consistency of intensity ratios obtained for the relative affinity ladder shown in Fig. 2 suggests that entropic effects are minimal (i.e., TeffΔ(ΔS)app
≈
0 in eqn. (8)) for the dissociation of Ag+ bound heterodimers among amides, and the ln(I[L1+Ag]+/I[L2+Ag]+) ratio can be equated to the relative affinity term, Δ(ΔH)/RTeff, as shown in eqn. (5).
![]() | ||
Fig. 2 Experimentally measured ln(I[L1+Ag]+/I[L2+Ag]+) values for N2-CID decomposition of Ag+ bound heterodimers of amides. The ln(I[L1+Ag]+/I[L2+Ag]+) values are the natural logarithm of ion intensity ratios. The data presented under the heading ln(I[L+Ag]+/I[DMF+Ag]+) are the average ± standard deviation of cumulative values expressed relative to N,N-dimethylformamide (DMF). The value in parenthesis is the arithmetic difference of ln(I[L1+Ag]+/I[L2+Ag]+) values. The ln(I[L1+Ag]+/I[L2+Ag]+) lines are not drawn to scale for clarity. |
Here we found that, the order of the Ag+ affinities of the six amides were: F<
MF
<
A
<
DMF
<
MA
<
DMA. To confirm this order of Ag+ affinities obtained under high-energy (keV, laboratory scale) N2-CID conditions, another relative affinity ladder similar to Fig. 2 was obtained at a lower collisional energy (eV, laboratory scale) or effective temperature (Teff) in the ion trap mass analyzer (MS2) of the tandem mass spectrometer system. The same order of Ag+ affinities: F
<
MF
<
A
<
DMF
<
MA
<
DMA was found, confirming that the entropic term, TeffΔ(ΔS)app, is indeed negligibly small under different collisional excitation (Teff) conditions.
Having established the order of Ag+ affinities among the six amides, we conducted separate extended kinetic method measurements to determine the absolute Ag+ affinities of the amides. For this purpose, a series of structurally similar reference compounds of known Ag+ affinities is required. However, reference Ag+ affinities comparable to those of the amides have not been reported in the literature. In another study, we have established the theoretical Ag+ affinities at 0 K of a series of methyl-substituted benzenes (Table 1), which include toluene (Tol), m-xylene (m-Xy), 1,3,5-trimethylbenzene (1,3,5-Me3Bz), 1,2,4,5-tetramethylbenzene (1,2,4,5-Me4Bz), pentamethylbenzene (Me5Bz) and hexamethylbenzene (Me6Bz).44 By applying kinetic method measurements and using the Ag+ affinities shown in Table 1 as reference values, we were able to obtain Ag+ affinities in agreement with the literature values of benzene (to within ±5 kJ mol−1),15,16 acetone (±8 kJ mol−1)16,17 and acetonitrile (±8 kJ mol−1)22,23 determined by either the RA/FT-ICR (quoted uncertainty ±19 kJ mol−1),16 or the threshold-CID method (±6–8 kJ mol−1).15,17,22,23 This series of methyl-substituted benzenes were found to form Ag+ bound heterodimers with amides (except formamide) under electrospray ionization conditions. Furthermore, kinetic method measurements indicated that they have comparable Ag+ affinities as the amides. Consequently, the methyl-substituted benzenes and their theoretical Ag+ affinity values (with an estimated error bar of ±10 kJ mol−1) were adopted as reference compounds/values in the present study.
A typical low-energy CID triple quadrupole MS/MS spectrum (15 eV, laboratory scale) of the [L1+
Ag
+
Ln]+ heterodimer (L1
=
N-methylformamide (MF) and Ln
=
toluene (Tol)) is shown in Fig. 3. For the extended kinetic method determinations, a series of I[MF+Ag]+/I[Ln+Ag]+ ion intensity ratios (where Ln
=
Tol, m-Xy, 1,3,5-Me3Bz, 1,2,4,5-Me4Bz) were measured over a range of 13–23 eV collision energies. As illustrated in Fig. 4(a), a plot of ln(I[MF+Ag]+/I[Ln+Ag]+)
versus
[ΔH[Ln+Ag]+
−
ΔHavg] yields a regression line whose slope and y-intercept render the effective temperature (Teff) of the dissociation heterodimers [MF
+
Ag
+
Ln]+ and
term, respectively. By plotting the
term against 1/RTeff
(Fig. 4(b)), the Ag+ affinity of N-methylformamide (MF), ΔH[MF+Ag]+, and the Δ(ΔS)app term in the protocol of the extended kinetic method were obtained. Similar treatments were applied to determine the Ag+ affinities of DMF, A, MA and DMA, and the results are listed in Table 2. Strictly speaking, due to the non-Boltzmann distribution of internal energy of the dissociating heterodimers, the Ag+ affinities measured by the kinetic method were obtained at an unspecified temperature.33,34 For this reason, we shall denote the experimental Ag+ affinities reported in this study as enthalpy of binding, ΔH, without a specified temperature. Additionally, we note that the temperature correction (estimated from standard statistical formula45) is generally small for system of this size such that ΔH0 and ΔH298 differ only by 1–2 kJ mol−1. Thus, for simplicity, as we have chosen theoretical ΔH0 as reference values in the kinetic method determinations, we shall compare the experimental kinetic method values with the theoretical binding affinities at 0 K (ΔH0) in the following discussion.
![]() | ||
Fig. 3 Triple quadrupole MS/MS (15 eV, laboratory scale) mass spectrum of the [MF![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() | ||
Fig. 4 (a) Plot of ln(I[MF+Ag]+/I[Ln+Ag]+)
versus
[ΔH[Ln+Ag]+![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
On the other hand, the Ag+ affinities determined by the extended kinetic method were found in the order: DMA>
MA
>
DMF
>
A
>
MF, in agreement with that established by standard kinetic method measurements mentioned earlier. The agreement between independent kinetic method measurements provides confidence to the order of absolute Ag+ affinities established in this study.
However, we found the Ag+ bound heterodimer between formamide (F) and methyl-substituted benzenes could not be easily generated by electrospray ionization; the heterodimer ion intensity was too weak so that the intensity ratios of its dissociation product ions could not be quantitatively measured. Hence, the absolute Ag+ affinity of F cannot be determined by the extended kinetic method. To obtain the absolute Ag+ affinity of F, the Ag+ affinities of MF, DMF, A, MA and DMA determined by the extended kinetic method were used to construct a ‘calibration plot’ of high-energy (keV) N2-CID ln(I[L+Ag]+/I[DMF+Ag]+) intensity ratio values (as shown in Fig. 2)
versus
ΔH[L+Ag]+
(L=
MF, DMF, A, MA and DMA) according to eqn. (5), and the Ag+ affinity of F was determined by extrapolation of the plot (Fig. 5(a)). Another plot based on the ln(I[L+Ag]+/I[DMF+Ag]+) values obtained under low-energy (eV) ion trap-CID conditions is shown in Fig. 5(b). From the slopes of the plots, the effective temperatures (Teff) are found to be 2,759 K and 625 K for high-energy N2-CID and ion trap-CID, respectively. The Ag+ affinity of F so determined is summarized in Table 3, and the average of the N2-CID and ion trap-CID affinity values is taken as the final absolute Ag+ affinity for formamide (F).
Amides | Ion trap-CID a
(Teff![]() ![]() |
N2-CID a
(Teff![]() ![]() |
Average b |
---|---|---|---|
a The Ag+ affinity of F was determined from the low-energy ion trap-CID and high-energy N2-CID calibration plots (Fig. 5) using the Ag+ affinities of MF, A, DMF, MA and DMA shown in Table 2 as calibration points. The uncertainties are expressed as ±SD of the linear regression analysis (ref. 46) of the calibration plots as shown in Fig. 5.
b Average ±SD of ion trap-CID and N2-CID values, with standard deviation obtained from the equation s2![]() ![]() ![]() ![]() |
|||
Formamide (F) | 159.4![]() ![]() |
165.2![]() ![]() |
162.3![]() ![]() |
![]() | ||
Fig. 5 Plot of (a) high energy N2-CID (4.7 keV, laboratory scale) and (b) low-energy ion trap-CID (eV, laboratory scale) ln(I[L+Ag]+/I[DMF+Ag]+) values versus Ag+ affinities (ΔH[L+Ag]+) of MF, A, DMF, MA and DMA (solid circles ●) determined by the extended kinetic method. The Ag+ affinity of F (open circles ○) was determined by extrapolation of the plot. |
As shown in Tables 2 and 3, the experimental uncertainty of both the extended and standard kinetic measurements is ±1 kJ mol−1. Combining the error bar (±10 kJ mol−1) of our chosen reference Ag+ affinity values, the overall uncertainty in our experimental absolute Ag+ affinities of the six amides is estimated to be ±11 kJ mol−1. Hence, the experimental affinity values are rounded off to integer values here and in the discussion hereafter to reflect the actual uncertainty of our experimental and theoretical values. As illustrated in Tables 2 and 3, the Ag+ affinities of the six amides (F<
MF
<
A
<
DMF
<
MA
<
DMA) span over a relatively wide range of 162–208 kJ mol−1. Hence, our experimental results indicate that methyl substitution either at the amide amino nitrogen or the amide carbon has a significant enhancing effect on the Ag+ binding strength to the amide ligand.
![]() | ||
Fig. 6 The possible binding modes of Ag+-amide complexes (R0, R1 and R2![]() ![]() |
![]() | ||
Fig. 7 The optimized geometries of the amide ligands (F, MF, DMF, A, MA and DMA, at the MP2/3-21G(d) level) and the Ag+-amide complexes (at the MP2/HW,3-21G(d) level), where R1, R2![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Species | E a | ΔH0b | Edefc |
---|---|---|---|
a Total energies at 0 K, calculated by eqn. (9), in Eh.
b Binding affinities at 0 K, calculated by eqn. (10), in kJ mol−1.
c Deformation energies48 at 0 K, calculated at approximate CCSD(T)/6-31+G(d) based on the additivity scheme: CCSD(T)/STO-3G(d)![]() ![]() ![]() ![]() ![]() ![]() |
|||
Ag+ | −145.01049 | — | — |
Formamide (F) | −169.40063 | — | — |
cis-N-Methylformamide (cis-MF) | −208.54986 | — | — |
trans-N-Methylformamide (trans-MF) | −208.54866 | — | — |
N,N-Dimethylformamide (DMF) | −247.70199 | — | — |
Acetamide (A) | −208.56555 | — | — |
cis-N-Methylacetamide (cis-MA) | −247.71483 | — | — |
trans-N-Methylacetamide (trans-MA) | −247.71257 | — | — |
N,N-Dimethylacetamide (DMA) | −286.86307 | — | — |
F_I | −314.47780 | 175 | 8 |
F_II | −314.45840 | 124 | 72 |
cis-MF_I | −353.63265 | 190 | 9 |
trans-MF_I | −353.63181 | 191 | 10 |
MF_II | −353.60995 | 130 | 78 |
MF_III | −353.60924 | 128 | 22 |
DMF_I | −392.78899 | 201 | 12 |
DMF_II | −392.76538 | 139 | 80 |
DMF_III | −392.76393 | 135 | 28 |
A_I | −353.64899 | 192 | 8 |
A_II | −353.63361 | 151 | 70 |
cis-MA_I | −392.80350 | 205 | 9 |
trans-MA_I | −392.80073 | 204 | 10 |
MA_II | −392.78398 | 154 | 80 |
DMA_I | −431.95454 | 213 | 12 |
DMA_II | −431.93908 | 172 | 70 |
The effect of Ag+ complexation on the geometry of the formamide ligands (F, MF and DMF) can be summarized as follows. When the Ag+ coordinates to the amide oxygen in a monodentate fashion in mode (I), it induces minor changes to the geometry on the ligands: the CO bonds are lengthened (by ∼0.04 Å) while the C–N bonds are shortened (∼0.05 Å), and the O
C–N angles are reduced by ∼2°. Similar observations have also been reported for the Cu+–formamide complex.32 On the other hand, when the cation is coordinated to the amino nitrogen in mode (II) or (III), the geometry around the amino nitrogen is changed from planar to pyramidal. The C–N bond is lengthened substantially (by ∼ 0.11Å), while the C
O bond remains virtually unchanged. A very similar trend is found in the acetamides (A, MA and DMA) except that no stable monodentate amino binding mode (III) complexes can be found. The results show that the binding of Ag+ on the amide nitrogen can disrupt the planar structures of the amides possibly by interacting with the lone pair electrons of the nitrogen atom.29,30
In terms of binding affinities, Ag+-amide complexes in modes (II) and (III) are less stable than the corresponding mode (I) by at least 40 kJ mol−1, depending on the ligands (Table 4). The relative instability of mode (II) could be related to their large deformation energies (Edef, Table 4),48 arising mainly from the compression of OC–N bond angle (by ∼7°) when Ag+ bridges between the carbonyl oxygen and the amino nitrogen. For mode (III), the Edef is comparable to that of mode (I). Hence, the very low stability of mode (III) suggests that some favorable interactions between the cation and the ligand have been reduced. We attribute the instability of mode (III) to the very large angle deviation between Ag+ and the dipole moment vector. For binding modes (I) and (II), the alignment between Ag+ and the dipole moment vector, on average, is ∼5° and ∼16°, respectively, but it becomes at least 38° for mode (III). It is this “misalignment” of Ag+ with the dipole moment that is likely to be responsible for the decrease in ion–dipole interaction, thus reducing the stability of the Ag+–amide complex in mode (III).
The theoretical Ag+ binding energies at 0 K of amides in the most stable configuration, i.e., binding mode (I), are compared with the experimental values in Table 5. For the six amides studied, the absolute theoretical Ag+ affinities are systematically 5–13 kJ mol−1 greater than the experimental values. The discrepancies probably could arise from the basis-set-superposition-error (BSSE).26 Nevertheless, even without this correction, the overall agreement in absolute affinities is reasonable (with an average deviation of 10 kJ mol−1, n=
6). More importantly, the protocol adopted here has reproduced the order of relative binding affinities determined by the kinetic method, with an average deviation of ±3 kJ mol−1
(n
=
6). Given the saving on computer time, we have chosen not to carry out the BSSE correction.
ΔH | ||||
---|---|---|---|---|
Amides | Theoretical a | Experimental b | ΔH(Expt)![]() ![]() |
Δ(ΔH)(Expt)![]() ![]() |
a Theoretical Ag+ affinities (ΔH0) at 0 K were determined at the approximate CCSD(T)/[HW(f),6-31+G(d)] level of theory. The values listed refer to the most stable geometries stated in the text. b This work. Experimental Ag+ affinities, ΔH, as listed in Tables 2 and 3. c Relative Ag+ affinity, Δ(ΔH)(Expt) or Δ(ΔH0)(Theory), expressed with reference to N,N-dimethylformamide (DMF). | ||||
Formamide (F) | 175 | 162 | −13 | −5 |
N-Methylformamide (MF) | 191 | 179 | −12 | −4 |
Acetamide (A) | 192 | 181 | −11 | −3 |
N,N-Dimethylformamide (DMF) | 201 | 193 | −8 | 0 |
N-Methylacetamide (MA) | 205 | 198 | −7 | 1 |
N,N-Dimethylacetamide (DMA) | 213 | 208 | −5 | 3 |
Previously, Boutreau et al. have obtained an Ag+ affinity of 194 kJ mol−1 for formamide at the B3LYP/BASIS2//B3LYP/BASIS1 level.26 As their method of correlation and basis set are different from ours, a direct comparison with our ab initio value of 175 kJ mol−1 is not possible. If BSSE correction is included, the theoretical B3LYP affinity decreased to 182 kJ mol−1, but is still 20 kJ mol−1 too high compared to our experimental value of 162 kJ mol−1. This could be due to the combined errors of the experimental determination and theoretical estimation. In this regard, we note that a diffuse function is not employed in the B3LYP calculations,26 which has been shown previously to be important in our work.25
In general, an increase in the number of methyl substituents increases Ag+ binding affinity. In our results, the binding energies of Ag+ in mode (I) of F, trans-MF and DMF are 175, 191 and 201 kJ mol−1, respectively. This increasing trend coincides with the increasing polarizabilities (in 10−24 cm3 units) of F (4.08), MF (5.91) and DMF (7.81),50 while the molecular dipole moments (in Debyes) of F (3.73), MF (3.83) and DMF (3.82),49 remain more or less unchanged. Thus, the increasing trend of the binding energies with the methyl substituents can be attributed to the increasing polarizabilities of the neutral amides, which enhance the binding through ion-induced dipole interaction. In addition, the electron-donating property of the methyl substituent also increases the availability of lone pairs of carbonyl oxygen and amino nitrogen, which in turn strengthens the binding with Ag+ through charge-transfer interaction. A recent study on the effect of alkylation of N- and O-donor ligands on the binding strength to Ag+ has also shown that the electron donating property of alkyl substituent can strengthen the binding through σ-donating interaction.51
Here, the effect of methyl group on Ag+ affinities of amides is further discussed in terms of N-methyl (by comparison within the formamide and acetamide series) and C-methyl (by comparison between the formamide and acetamide series) substituent effect. The N-methyl substituent enhancement is more significant in the monodentate binding mode (I) (average ∼12 kJ mol−1) than that in the bidentate binding mode (II) (average ∼9 kJ mol−1), except for DMA. On the contrary, the C-methyl substituent effect is more pronounced in mode (II) (average ∼28 kJ mol−1) than in mode (I) (average ∼14 kJ mol−1). The results imply that preferential binding (mode (I) versus (II)) of Ag+ at the amide linkage can possibly be controlled by different substituents at the carbonyl carbon and/or amino nitrogen. In fact, a systematic study of the substituent effect on the binding geometries and binding affinities of Ag+ towards the amide linkage is underway in our laboratory.
Lastly, we have plotted the experimental Ag+ affinities against the proton affinities (PA)52 and lithium cation affinities (LCA)38 of these six amides (Fig. 8). Excellent linear correlation is found (r2 ∼ 0.99) for both series. While the good correlation with LCA can be attributed to the similarity in the electrostatic nature of binding, the correlation with PA cannot, as proton-amide interaction is covalent in nature. The good correlation with PA simply reflects the fact that substituent effects on chemically related ligands are essentially additive in nature.
![]() | ||
Fig. 8 Correlation of experimental Ag+ affinities with (a) proton affinities (PA) and (b) lithium cation affinities (LCA) for the six amides. |
Various possible modes of Ag+ binding to the six amides are studied theoretically, and cation binding to OC (mode (I)) is found to be preferred over the other modes by at least 40 kJ mol−1. With the shortening of the C–N bond in mode (I)
(compared to the free ligand), one would associate this with a strengthening of the bond, and hence an increase in the amide rotational barrier. Interestingly, variable temperature proton NMR experiments conducted on DMA have suggested otherwise, as the barrier is found to be reduced in the presence of Ag+.53,54 Given the biological importance of amides as models of peptide bonds, we have carried out further theoretical studies on the effect of Ag+ on the rotational barrier of amides and the results of the study will be reported in due course.
This journal is © the Owner Societies 2004 |