Issue 26, 2014

Evaluation of La0.3Sr0.7Ti1−xCoxO3 as a potential cathode material for solid oxide fuel cells

Abstract

Perovskites La0.3Sr0.7Ti1−xCoxO3 (LSTCs, x = 0.3–0.6) are systematically evaluated as potential cathode materials for solid oxide fuel cells. The effects of Co substitution for Ti on structural characteristics, thermal expansion coefficients (TECs), electrical conductivity, and electrochemical performance are investigated. All of the synthesized LSTCs exhibit a cubic structure. With Rietveld refinement on the high-temperature X-ray diffraction data, the TECs of LSTCs are calculated to be 20–26 × 10−6 K−1. LSTC shows good thermal cycling stability and is chemically compatible with the LSGM electrolyte below 1250 °C. The substitution of Co for Ti increases significantly the electrical conductivity of LSTC. The role of doping on the conduction behavior is discussed based on defect chemistry theory and first principles calculation. The electrochemical performances of LSTC are remarkably improved with Co substitution. The area specific resistance of sample La0.3Sr0.7Ti0.4Co0.6O3 on the La0.8Sr0.2Ga0.8Mg0.2O3−δ (LSGM) electrolyte in symmetrical cells is 0.0145, 0.0233, 0.0409, 0.0930 Ω cm2 at 850, 800, 750 and 700 °C, respectively, and the maximum power density of the LSGM electrolyte (400 μm)-supported single cell with the Ni–GDC anode, LDC buffer layer and LSTC cathode reaches 464.5, 648, and 775 mW cm−2 at 850 °C for x = 0.3, 0.45, and 0.6, respectively. All these results suggest that LSTC are promising candidate cathode materials for SOFCs.

Graphical abstract: Evaluation of La0.3Sr0.7Ti1−xCoxO3 as a potential cathode material for solid oxide fuel cells

Article information

Article type
Paper
Submitted
07 Feb 2014
Accepted
13 Apr 2014
First published
16 Apr 2014
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2014,2, 10290-10299

Author version available

Evaluation of La0.3Sr0.7Ti1−xCoxO3 as a potential cathode material for solid oxide fuel cells

Z. Du, H. Zhao, Y. Shen, L. Wang, M. Fang, K. Świerczek and K. Zheng, J. Mater. Chem. A, 2014, 2, 10290 DOI: 10.1039/C4TA00658E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements