Issue 31, 2019

Visible light-triggered gel-to-sol transition in halogen-bond-based supramolecules

Abstract

Photoresponsive supramolecular gels have aroused continuous attention because of their extensive applications; however, most studies utilize UV light, which inevitably brings about some health and environmental issues. The halogen bond is an important driving force for constructing supramolecules due to its high directionality, tunable strength, good hydrophobicity, and large size of the halogen atoms. Yet, it still remains a formidable challenge to utilize halogen bonds as a driving force to fabricate a visible light responsive gel. In this work, to fabricate such a gel, azopyridine-containing Azopy-Cn (n = 8, 10, 12) was selected as a halogen bond acceptor, while 1,2-bis(2,3,5,6-tetrafluoro-4-iodophenyl)diazene (BTFIPD) was chosen as both the halogen bond donor and visible light responsive moiety. The visible light response of BTFIPD resulted from the significant separation of n–π* energy levels between trans and cis isomers due to the introduction of an electron-withdrawing group (fluorine) to azobenzene at the ortho-position. Interestingly, the gel exhibited a good gel-to-sol transition behavior upon green light irradiation. At the same time, the morphologies varied from uniform narrow flakes to broad sheets with increasing illumination time. We provide an environmentally-friendly visible light-triggered method to regulate the phase transition of supramolecular materials in applications ranging from energy conversion to information storage.

Graphical abstract: Visible light-triggered gel-to-sol transition in halogen-bond-based supramolecules

Supplementary files

Article information

Article type
Paper
Submitted
01 Jul 2019
Accepted
15 Jul 2019
First published
15 Jul 2019

Soft Matter, 2019,15, 6411-6417

Visible light-triggered gel-to-sol transition in halogen-bond-based supramolecules

X. Tong, Y. Qiu, X. Zhao, B. Xiong, R. Liao, H. Peng, Y. Liao and X. Xie, Soft Matter, 2019, 15, 6411 DOI: 10.1039/C9SM01310E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements