Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 31, 2019

Synthesis and characterisation of redox hydrogels based on stable nitroxide radicals

Author affiliations

Abstract

The principle of encapsulation/release of a guest molecule from stimuli responsive hydrogels (SRHs) is mainly realised with pH, temperature or light stimuli. However, only a limited number of redox responsive hydrogels have been investigated so far. We report here the development of a SRH that can release its guest molecule upon a redox stimulus. To obtain this redox hydrogel, we have introduced into the hydrogel the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) stable nitroxide radical, which can be reversibly oxidized into an oxoammonium cation (TEMPO+). Water solubility is provided by the presence of the (oligoethyleneglycol)methacrylate (OEGMA) comonomer. Electrochemical and mechanical characterization showed that those gels exhibit interesting physicochemical properties, making them very promising candidates for practical use in a wide range of applications.

Graphical abstract: Synthesis and characterisation of redox hydrogels based on stable nitroxide radicals

Supplementary files

Article information


Submitted
03 May 2019
Accepted
15 Jul 2019
First published
15 Jul 2019

Soft Matter, 2019,15, 6418-6426
Article type
Paper

Synthesis and characterisation of redox hydrogels based on stable nitroxide radicals

M. Khodeir, B. Ernould, J. Brassinne, S. Ghiassinejad, H. Jia, S. Antoun, C. Friebe, U. S. Schubert, Z. Kochovski, Y. Lu, E. Van Ruymbeke and J. Gohy, Soft Matter, 2019, 15, 6418 DOI: 10.1039/C9SM00905A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements