Issue 18, 2016

Influence of trehalose on human islet amyloid polypeptide fibrillation and aggregation

Abstract

Abnormal denaturation and aggregation of human amylin or islet amyloid polypeptide (IAPP) into amyloid fibrils has been implicated in the pathogenesis of type 2 diabetic mellitus. Trehalose, a super-hydrophilic molecule, has been shown to prevent denaturation of biomolecules when they are under environmental stress. In this work, we sought to investigate the effects of trehalose on the fibrillation and aggregation of human IAPP (hIAPP) by using circular dichroism spectrum, thioflavin-T fluorescence spectrum, dynamic light scattering, transmission electronic microscopy, atomic force microscopy and quartz crystal microbalance. We demonstrated that (1) the conformation of hIAPP changed from α-helix to β-sheet, followed by fibrillation and aggregation, (2) a low dose of trehalose (under 100 mM) inhibited or delayed the conformation transition of hIAPP and (3) a high dose (more than 500 mM) induced the conformation transition, and promoted the fibrillation and aggregation of hIAPP. These findings are in agreement with the hypothesis of the water replacement and volume exclusion effect on the proteins. The lower concentration of trehalose could replace the water molecules surrounding the hIAPP, and interact with proteins through hydrogen bonding, leading to a reduction in the protein interaction itself, and therefore inhibiting or delaying the protein fibrillation and aggregation. In contrast, the higher concentration of trehalose might interact with itself to form macromolecular clusters, acting as a crowding agent, leading to the hIAPP molecules being excluded by the trehalose clusters and interacting between each other, and therefore promoting the hIAPP fibrillation and aggregation.

Graphical abstract: Influence of trehalose on human islet amyloid polypeptide fibrillation and aggregation

Article information

Article type
Paper
Submitted
25 Dec 2015
Accepted
29 Jan 2016
First published
29 Jan 2016

RSC Adv., 2016,6, 15240-15246

Influence of trehalose on human islet amyloid polypeptide fibrillation and aggregation

C. Chen, T. Yao, Q. Zhang, Y. He, L. Xu, M. Zheng, G. Zhou, Y. Zhang, H. Yang and P. Zhou, RSC Adv., 2016, 6, 15240 DOI: 10.1039/C5RA27689F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements