Issue 18, 2016

Controlling the corrosion rate and behavior of biodegradable magnesium by a surface-immobilized ultrathin 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) film

Abstract

An ultrathin bisphosphonate film, 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), was deposited on magnesium for biodegradable implant applications. The small, bioactive HEDP molecule is supposed to be not only bio-safe, but also favorable for creating a highly protective layer for the control of the corrosion/degradation of Mg. In an in situ chemical sequence, the HEDP molecules were covalently surface-immobilized on the alkaline pretreated Mg and then spontaneously deposited by participation in a chelating reaction with Mg ions. An organometallic-like compound layer was thus formed, which was ascertained to be within the nanoscale and complied well with the substrate. The tape test showed that the HEDP film provides excellent adhesion strength. Electrochemical corrosion and in vitro immersion degradation investigations demonstrated that the HEDP coated Mg exhibited significantly slower corrosion rate than untreated Mg in phosphate buffered saline (PBS) solution. Of particular significance is the observation that HEDP coated Mg presented a remarkably suppressed localized corrosion mode. The meliorated corrosion/degradation behavior is credited to both the nature of the organometallic-like HEDP derivative layer, as well as the high quality of the film, with respect to compactness and homogeneity. Our HEDP modified Mg may bode well for application in biodegradable implants.

Graphical abstract: Controlling the corrosion rate and behavior of biodegradable magnesium by a surface-immobilized ultrathin 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) film

Article information

Article type
Paper
Submitted
04 Nov 2015
Accepted
19 Jan 2016
First published
22 Jan 2016

RSC Adv., 2016,6, 15247-15259

Controlling the corrosion rate and behavior of biodegradable magnesium by a surface-immobilized ultrathin 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) film

M. Chen, Y. Chen, W. Zhang, S. Zhao, J. Wang, J. Mao, W. Li, Y. Zhao, N. Huang and G. Wan, RSC Adv., 2016, 6, 15247 DOI: 10.1039/C5RA23228G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements