Jump to main content
Jump to site search

Issue 47, 2015
Previous Article Next Article

Polymer organogelation with chitin and chitin nanocrystals

Author affiliations

Abstract

In this paper, we show that biodegradable and biocompatible organogels can be formed with chitin as the filler material and triglycerides as the continuous hydrophobic phase. When crude chitin was used, a large degree of aggregation was observed that prevented the formation of stable organogels. Two approaches were used to diminish this degree of aggregation and increase the stability. Either surfactants were used to increase the dispersability of the crude chitin, or the crude chitin was transformed into smaller rod-like nanocrystals by acid hydrolysis. Both approaches led to the formation of stable organogels with storage moduli up to 106 Pa for high chitin concentrations (20 wt%). Three different types of surfactants were used, namely phosphatidylcholine, enzymatically modified phosphatidylcholine and sorbitan monostearate (Span 60). The choice of surfactant has a large influence on the gel strength and the temperature sensitivity of the gels. With chitin nanocrystals, in the presence of surfactants, larger gel strengths were observed for lower concentrations (1–10 wt%), indicating more efficient packing of the particles. Gels were stable even after addition of considerable amounts of water up to 25 wt%. The increase in gel strength in the presence of water (storage modulus) was most likely an effect of the water absorption ability of chitin that increased the effective volume fraction of the fillers.

Graphical abstract: Polymer organogelation with chitin and chitin nanocrystals

Back to tab navigation

Supplementary files

Article information


Submitted
25 Mar 2015
Accepted
16 Apr 2015
First published
16 Apr 2015

This article is Open Access

RSC Adv., 2015,5, 37789-37799
Article type
Paper
Author version available

Polymer organogelation with chitin and chitin nanocrystals

C. V. Nikiforidis and E. Scholten, RSC Adv., 2015, 5, 37789
DOI: 10.1039/C5RA06451A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements