Issue 19, 2015

In situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene

Abstract

We report a facile approach for the in situ synthesis of very small iron oxide nanoparticles on the surface of high-quality graphene sheets. Our synthetic strategy involved the direct, liquid-phase exfoliation of highly crystalline graphite (avoiding any oxidation treatment) and the subsequent chemical functionalization of the graphene sheets via the well-established 1,3-dipolar cycloaddition reaction. The resulting graphene derivatives were employed for the immobilization of the nanoparticle precursor (Fe cations) at the introduced organic groups by a modified wet-impregnation method, followed by interaction with acetic acid vapours. The final graphene-iron oxide hybrid material was achieved by heating (calcination) in an inert atmosphere. Characterization by X-ray diffraction, transmission electron and atomic force microscopy, Raman and X-ray photoelectron spectroscopy gave evidence for the formation of rather small (<12 nm), spherical, magnetite-rich nanoparticles which were evenly distributed on the surface of few-layer (<1.2 nm thick) graphene. Due to the presence of the iron oxide nanoparticles, the hybrid material showed a superparamagnetic behaviour at room temperature.

Graphical abstract: In situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene

Supplementary files

Article information

Article type
Paper
Submitted
02 Feb 2015
Accepted
03 Apr 2015
First published
14 Apr 2015

Nanoscale, 2015,7, 8995-9003

Author version available

In situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene

T. Tsoufis, Z. Syrgiannis, N. Akhtar, M. Prato, F. Katsaros, Z. Sideratou, A. Kouloumpis, D. Gournis and P. Rudolf, Nanoscale, 2015, 7, 8995 DOI: 10.1039/C5NR00765H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements