Issue 4, 2014

Chemo-enzymatic synthesis route to poly(glucosyl-acrylates) using glucosidase from almonds

Abstract

Novel types of glucosyl-acrylate monomers are obtained by β-glucosidase from almond catalyzed glycosidation reaction. The saccharide-acrylate monomers were synthesized by reaction of D-glucose with hydroxyl functional acrylates: 2-hydroxyethyl acrylate (2-HEA), 2-hydroxyethyl methacrylate (2-HEMA) and 4-hydroxybutyl acrylate (4-HBA). The reaction products could be identified as 2-(β-glucosyloxy)-ethyl acrylate, 2-(β-glucosyloxy)-ethyl methacrylate and 4-(β-glucosyloxy)-ethyl acrylate respectively. The synthesis yield was optimized by variation of the 2-HEA–water ratio, the presence of water-miscible co-solvents and the reaction time. The optimal reaction mixture was found to contain 13 vol% water, 80 vol% 2-HEA and 7 vol%; 1.4-dioxane. The maximal yield under these conditions was 50 wt% based on D-glucose after 24 hours of reaction. The enzymatically synthesized glucosyl-acrylates were successfully polymerized by free radical polymerization in DMF and water. The glycosidic linkage of the glycosyl-acrylate monomers was retained during the polymerization process. The enzymatically synthesized glucosyl-acrylates could be successfully copolymerized with vinyl monomers 2-HEA, 2-HEMA, methacryl amide and N-vinyl imidazole.

Graphical abstract: Chemo-enzymatic synthesis route to poly(glucosyl-acrylates) using glucosidase from almonds

Supplementary files

Article information

Article type
Paper
Submitted
10 Jun 2013
Accepted
23 Jul 2013
First published
23 Jul 2013

Green Chem., 2014,16, 1837-1846

Chemo-enzymatic synthesis route to poly(glucosyl-acrylates) using glucosidase from almonds

W. M. J. Kloosterman, S. Roest, S. R. Priatna, E. Stavila and K. Loos, Green Chem., 2014, 16, 1837 DOI: 10.1039/C3GC41115J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements