Jump to main content
Jump to site search

Issue 3, 2014
Previous Article Next Article

Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4

Author affiliations

Abstract

Lithium-ion-conducting solid electrolytes show promise for enabling high-energy secondary battery chemistries and solving safety issues associated with conventional lithium batteries. Achieving the combination of high ionic conductivity and outstanding chemical stability in solid electrolytes is a grand challenge for the synthesis of solid electrolytes. Herein we report the design of aliovalent substitution of Li4SnS4 to achieve high conduction and excellent air stability based on the hard and soft acids and bases theory. The solid electrolyte of composition Li3.833Sn0.833As0.166S4 has a high ionic conductivity of 1.39 mS cm−1 at 25 °C. Considering the high Li+ transference number, this phase conducts Li+ as well as carbonate-based liquid electrolytes. This research also addresses the compatibility of the sulfide-based solid electrolytes through chemical passivation.

Graphical abstract: Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4

Back to tab navigation

Supplementary files

Article information


Submitted
09 Oct 2013
Accepted
16 Dec 2013
First published
16 Dec 2013

Energy Environ. Sci., 2014,7, 1053-1058
Article type
Paper
Author version available

Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4

G. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney and C. Liang, Energy Environ. Sci., 2014, 7, 1053
DOI: 10.1039/C3EE43357A

Social activity

Search articles by author

Spotlight

Advertisements