Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 21, 2020
Previous Article Next Article

Structural characterization of HPM-7, a more ordered than expected germanosilicate zeolite

Author affiliations

Abstract

HPM-7, a germanosilicate synthesized using long imidazolium-based dications with two different linkers, is shown to possess the POS topology, although disorder may exist but it is very difficult to discern. First, three simple ordered polymorphs (POS-A to POS-C) with very similar energies and structural motifs could give rise to intergrowths that would be very difficult to recognize by powder X-ray diffraction, according to DIFFaX simulations. Another four structures (POS-D to POS-G) can be derived from POS by changing the orientation of two single four rings within the structure, possibly providing an additional source of disorder. While 3D EDT strongly suggests that HPM-7 basically possesses the POS-A (i.e. POS) topology, a detailed HR-STEM study demonstrates the rare existence of some disorder compatible with the polymorph POS-D. The general avoidance of polymorphs with very similar structural motifs and comparable energies points to a rather specific structure-direction by the organic dications used.

Graphical abstract: Structural characterization of HPM-7, a more ordered than expected germanosilicate zeolite

Back to tab navigation

Supplementary files

Article information


Submitted
04 Mar 2020
Accepted
23 Apr 2020
First published
04 May 2020

This article is Open Access

Dalton Trans., 2020,49, 7037-7043
Article type
Paper

Structural characterization of HPM-7, a more ordered than expected germanosilicate zeolite

P. Lu, Y. Zhang, A. Mayoral, L. Gómez-Hortigüela and M. A. Camblor, Dalton Trans., 2020, 49, 7037
DOI: 10.1039/D0DT00818D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements