Jump to main content
Jump to site search

Issue 14, 2020
Previous Article Next Article

Doping and ion substitution in colloidal metal halide perovskite nanocrystals

Author affiliations

Abstract

The past decade has witnessed tremendous advances in synthesis of metal halide perovskites and their use for a rich variety of optoelectronics applications. Metal halide perovskite has the general formula ABX3, where A is a monovalent cation (which can be either organic (e.g., CH3NH3+ (MA), CH(NH2)2+ (FA)) or inorganic (e.g., Cs+)), B is a divalent metal cation (usually Pb2+), and X is a halogen anion (Cl, Br, I). Particularly, the photoluminescence (PL) properties of metal halide perovskites have garnered much attention due to the recent rapid development of perovskite nanocrystals. The introduction of capping ligands enables the synthesis of colloidal perovskite nanocrystals which offer new insight into dimension-dependent physical properties compared to their bulk counterparts. It is notable that doping and ion substitution represent effective strategies for tailoring the optoelectronic properties (e.g., absorption band gap, PL emission, and quantum yield (QY)) and stabilities of perovskite nanocrystals. The doping and ion substitution processes can be performed during or after the synthesis of colloidal nanocrystals by incorporating new A′, B′, or X′ site ions into the A, B, or X sites of ABX3 perovskites. Interestingly, both isovalent and heterovalent doping and ion substitution can be conducted on colloidal perovskite nanocrystals. In this review, the general background of perovskite nanocrystals synthesis is first introduced. The effects of A-site, B-site, and X-site ionic doping and substitution on the optoelectronic properties and stabilities of colloidal metal halide perovskite nanocrystals are then detailed. Finally, possible applications and future research directions of doped and ion-substituted colloidal perovskite nanocrystals are also discussed.

Graphical abstract: Doping and ion substitution in colloidal metal halide perovskite nanocrystals

Back to tab navigation

Article information


Submitted
18 Jan 2020
First published
15 Jun 2020

Chem. Soc. Rev., 2020,49, 4953-5007
Article type
Review Article
Author version available

Doping and ion substitution in colloidal metal halide perovskite nanocrystals

C. Lu, G. V. Biesold-McGee, Y. Liu, Z. Kang and Z. Lin, Chem. Soc. Rev., 2020, 49, 4953 DOI: 10.1039/C9CS00790C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements