Issue 36, 2015

A computational study of the effect of the metal organic framework environment on the release of chemically stored nitric oxide

Abstract

The use of copper based metal organic frameworks as a vehicle for the storage and delivery of chemically stored nitric oxide has been proposed based on recent experiments [J. Am. Chem. Soc., 2012, 134, 3330–3333]. In these experiments copper based metal organic frameworks (MOFs) suspended in ethanol catalytically convert chemically stored nitric oxide (in the S-nitrosothiol or RSNO form) to free nitric oxide at a slow and sustained rate, as compared to a quick release in a solution of ethanol containing free copper ions. In order to gain insight on the effect of the MOF environment on the catalytic activity, a combination of electronic structure calculations on representative clusters and classical simulations using a force-field (partly parameterized on the above calculations) is used to study a simple RSNO species, S-nitrosomethane (CH3SNO) as well as the biologically compatible S-nitrosocysteine, both in the MOF and free copper solution. The free energy profiles of bringing the RSNO species to the catalytic centers have been compared and related to the different solvation environments of the copper catalyst in the complex solvated MOF and in free copper solution. Surprisingly, in the case of the simple CH3SNO moiety as well as the S-nitrosocysteine case, the free energy profile of bringing the first RSNO from the center of one of the pores to the catalytic site in the pore is very similar to the free solution case. On the other hand, bringing a second RSNO molecule to the same catalytic site or to the adjacent catalytic copper site show relatively higher barriers. These studies help shed light on the sustained nitric oxide release in the MOF environment.

Graphical abstract: A computational study of the effect of the metal organic framework environment on the release of chemically stored nitric oxide

Supplementary files

Article information

Article type
Paper
Submitted
20 May 2015
Accepted
14 Aug 2015
First published
14 Aug 2015

Phys. Chem. Chem. Phys., 2015,17, 23403-23412

A computational study of the effect of the metal organic framework environment on the release of chemically stored nitric oxide

T. Li, K. Taylor-Edinbyrd and R. Kumar, Phys. Chem. Chem. Phys., 2015, 17, 23403 DOI: 10.1039/C5CP02926K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements