Issue 19, 2015

Kinetic and mechanistic study of the reaction of OH radicals with methylated benzenes: 1,4-dimethyl-, 1,3,5-trimethyl-, 1,2,4,5-, 1,2,3,5- and 1,2,3,4-tetramethyl-, pentamethyl-, and hexamethylbenzene

Abstract

The reaction of OH radicals with a series of methylated benzenes was studied in a temperature range 300–350 K using a flash-photolysis resonance fluorescence technique. Reversible OH additions led to complex OH decays dependent on the number of distinguishable adducts. Except for hexamethylbenzene, triexponential OH decay curves were obtained, consistent with formation of at least two adduct species. For three compounds that can strictly form two adduct isomers for symmetry reasons (1,4-dimethyl-, 1,3,5-trimethyl-, and 1,2,4,5-tetramethylbenzene) with OH bound ortho or ipso with respect to the methyl groups, OH decay curves were analysed in terms of a reaction mechanism in which the two adducts can be formed directly by OH addition or indirectly by isomerization. In all cases one adduct (add1) is dominating the decomposition back to OH. The other (add2) is more elusive and only detectable at elevated temperatures, similar to the single OH adduct of hexamethylbenzene. Two limiting cases of the general reaction mechanism could be examined quantitatively: reversible formation of add2 exclusively in the OH reaction or by isomerization of add1. Total OH rate constants, adduct loss rate constants and products of forward and reverse rate constants of reversible reactions were determined. From these quantities, adduct yields, equilibrium constants, as well as reaction enthalpies and entropies were derived for the three aromatics. Adduct yields strongly depend on the selected reaction model but generally formation of add1 predominates. For both models equilibrium constants of OH reactions lie between those of OH + benzene from the literature and those obtained for OH + hexamethylbenzene. The corresponding reaction enthalpies of add1 and add2 formations are in a range −87 ± 20 kJ mol−1, less exothermic than for hexamethylbenzene (−101 kJ mol−1). Reaction enthalpies of possible add1 → add2 isomerizations are comparatively small. Because results for 1,3,5-trimethylbenzene are partly inconsistent with a direct formation of add2, we promote the existence of isomerization reactions. Moreover, based on available theoretical work in the literature, add1 and add2 are tentatively identified as ortho and ipso adducts, respectively. Total OH rate constants were obtained for all title compounds. They can be described by Arrhenius equations: kOH = A × exp(−B/T). The parameters ln(A/(cm3 s−1)) = −25.6 ± 0.3, −25.3 ± 0.6, −27.3 ± 0.3, −24.6 ± 0.3, −26.2 ± 0.4, −26.2 ± 0.4 and −24.5 ± 0.2, and B/K = −160 ± 90, −550 ± 180, −1120 ± 90, −330 ± 100, −820 ± 100, −980 ± 130, and −570 ± 40 were determined for 1,4-dimethyl-, 1,3,5-trimethyl-, 1,2,4,5-, 1,2,3,5- and 1,2,3,4-tetramethyl-, pentamethyl-, and hexamethylbenzene.

Graphical abstract: Kinetic and mechanistic study of the reaction of OH radicals with methylated benzenes: 1,4-dimethyl-, 1,3,5-trimethyl-, 1,2,4,5-, 1,2,3,5- and 1,2,3,4-tetramethyl-, pentamethyl-, and hexamethylbenzene

Supplementary files

Article information

Article type
Paper
Submitted
15 Jan 2015
Accepted
17 Apr 2015
First published
20 Apr 2015

Phys. Chem. Chem. Phys., 2015,17, 13053-13065

Author version available

Kinetic and mechanistic study of the reaction of OH radicals with methylated benzenes: 1,4-dimethyl-, 1,3,5-trimethyl-, 1,2,4,5-, 1,2,3,5- and 1,2,3,4-tetramethyl-, pentamethyl-, and hexamethylbenzene

P. Alarcón, B. Bohn and C. Zetzsch, Phys. Chem. Chem. Phys., 2015, 17, 13053 DOI: 10.1039/C5CP00253B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements