Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 17, 2014
Previous Article Next Article

The rapid formation of functional monolayers on silicon under mild conditions

Author affiliations

Abstract

We report on an exceedingly mild chemical functionalization of hydrogen-terminated Si(100) with unactivated and unprotected bifunctional α,ω-dialkynes. Monolayer formation occurs rapidly in the dark, and at room temperature, from dilute solutions of an aromatic-conjugated acetylene. The method addresses the poor reactivity of p-type substrates under mild conditions. We suggest the importance of several factors, including an optimal orientation for electron transfer between the adsorbate and the Si surface, conjugation of the acetylenic function with a π-system, as well as the choice of a solvent system that favors electron transfer and screens Coulombic interactions between surface holes and electrons. The passivated Si(100) electrode is amenable to further functionalization and shown to be a viable model system for redox studies at non-oxide semiconductor electrodes in aqueous solutions.

Graphical abstract: The rapid formation of functional monolayers on silicon under mild conditions

Back to tab navigation

Supplementary files

Publication details

The article was received on 26 Jan 2014, accepted on 04 Mar 2014 and first published on 10 Mar 2014


Article type: Paper
DOI: 10.1039/C4CP00396A
Author version
available:
Download author version (PDF)
Citation: Phys. Chem. Chem. Phys., 2014,16, 8003-8011
  • Open access: Creative Commons BY license
  •   Request permissions

    The rapid formation of functional monolayers on silicon under mild conditions

    S. Ciampi, E. Luais, M. James, M. H. Choudhury, N. A. Darwish and J. J. Gooding, Phys. Chem. Chem. Phys., 2014, 16, 8003
    DOI: 10.1039/C4CP00396A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements