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additives.  
 The purpose of this work is to address these issues by defining 
the experimental factors that can be used to both reduce reaction 
times for hydrosilylation reactions carried out at room 
temperature and without light excitationas well as to overwrite 5 

the generally-observed higher reactivity of n-type materials. The 
key to this work is the combination of a molecular adsorbate, 1,4-
diethynylbenzene (DEB), which is expected to both stabilize Si-
centered cations and to favorably orient on the Si−H surface for 
optimal electron transfer, with a solvent system that can facilitate 10 

electron transfer and screen Coulomb interactions between 
surface holes and electrons.  

2. Experimental Section 
2.1 Materials 

Hydrogen peroxide (30 wt % sol. in water, Sigma-Aldrich), 15 

hydrofluoric acid (Riedel-de Haën, 48 wt % sol. in water), and 
sulfuric acid (J. T. Baker) used in wafers cleaning and etching 
procedures were of semiconductor grade. 1,4-Diethynylbenzene 
(DEB, Aldrich, 96%) was purified purified by silica gel column 
chromatography, eluting with hexane. 1,8-Nonadiyne (Alfa 20 

Aesar, 97%) was redistilled from sodium borohydride (Sigma-
Aldrich, 99+%) under reduced pressure (80 ºC, 10−12 Torr) and 
stored under a high purity argon atmosphere (O2 < 5 ppb) prior to 
use. Azidomethylferrocene was prepared according to literature 
procedures.19, 20 Milli-Q™ water (> 18 MΩ cm) was used to 25 

prepare solutions for chemical reactions and surface cleaning 
procedures. Dichloromethane, hexane and 2-propanol, for 
chemical reactions, surface cleaning and purification procedures 
were redistilled prior to use. Anhydrous solvents (PureSolv MD 
7, approx. 5-15 ppm of water)were used for all surface reactions. 30 

Thin-layer chromatography (TLC) was performed on Merck 
silica gel aluminum sheets (60 F254). Davisil®LC 60 Å silica gel 
(40−60μm) was used for column chromatography. Silicon wafers 
were of prime grade, single-side polished, 500 ± 25 μm thick, 
100-oriented and were obtained from Siltronix, S.A.S. 35 

(Archamps, France). Boron- (p-type, 100> ± 0.9°) and 
phosphorous-doped (n-type, <100> ± 0.05°) wafers had a 
nominal resistivity of 10–20 Ω cm and 8–12 Ω cm, respectively. 

2.2 Surface analysis 

2.2.1 XPS measurements 40 

X-ray photoelectron spectra were obtained on an ESCALAB 
220iXL spectrometer fitted with a monochromatic Al Kα source 
(1486.6 eV), a hemispherical analyzer and a 6 channel detector. 
High resolution spectra of Si 2p (93–109 eV binding energy), C 
1s (279–295 eV), N 1s (392–408 eV), O 1s (525–541 eV), F 1s 45 

(677–694 eV), and Fe 2p (700–735 eV), as well as survey scans 
(0–1300 eV) were recorded in normal emission (θ = 90°) with the 
analyzing chamber operating below 10–9 mbar. The atomic 
compositions were corrected for atomic sensitivities and 
measured from high-resolution scans. Atomic sensitivity factors 50 

are often instrument-sensitive and so the atomic sensitivities 
obtained from the Avantage software interfaced with the 
spectrometer were 0.817 for Si 2p, 1.000 for C 1s, 1.800 for N 1s, 
2.930 for O 1s, 4.430 for F 1s, and 16.420 for Fe 2p. The 
resolution of the spectrometer is ca. 0.6 eV as measured from the 55 

Ag 3d5/2 signal (full width at half maximum, fwhm) with 20 eV 

pass energy. High-resolution scans were run with 0.1 eV step 
size, dwell time of 100 ms and the analyzer pass energy set to 20 
eV. Survey scans were carried out with a 1.0 eV step size, a 100 
ms dwell time and analyzer pass energy of 100 eV. After 60 

background subtraction using the Shirley routine, spectra were 
fitted with Voigt functions (a convolution of Lorentzian and 
Gaussian profiles) as described previously.20, 21All energies are 
binding energies expressed in eV, obtained by applying to all 
samples a rigid shift to bring the binding energy of the C 1s peak 65 

to a value of 285.0 eV. The ratios of the integrated areas for the 
refined C 1s (C−C, carbon-bonded carbons) and N 1s emissions, 
each normalized for their elemental sensitivity, scanning time 
(number of scans accumulated), and for a square root dependence 
on the photoelectron kinetic energy, afforded an estimate of the 70 

conversion of the acetylenyl surface (DEB film) to the ferrocene-
functionalized surface. When detectable above noise levels, the 
fractional monolayer coverage of oxidized silicon was calculated 
directly from the oxidized-to-bulk Si 2p peak area ratio according 
to the method described by Webb and co-workers for very thin 75 

oxide overlayers.22 The spectrometer silica detection limit can be 
approximated to ca. 0.06 monolayers equivalents.  

2.2.2 X-ray reflectometry 
X-ray reflectivity (XRR) profiles of the self-assembled surfaces 
were measured under ambient conditions on a Panalytical Ltd 80 

X’Pert Pro Reflectometer using Cu Kα X-ray radiation (λ = 
1.54056 Å). The X-ray beam was focused using a Göbel mirror 
and collimated with 0.2 mm pre-sample slit and a post-sample 
parallel plate collimator. Reflectivity data were collected over the 
angular range 0.05° ≤ θ ≤ 5.00°, with a step size of 0.010° and 85 

counting times of 10 s per step. Prior to measurements, samples 
were stored under argon and exposed to air for approximately 10 
min in order to be aligned on the reflectometer. From the 
experimental data, structural parameters of the self-assembled 
structures were refined using the MOTOFIT analysis software 90 

with reflectivity data presented as a function of the momentum 
transfer vector normal to the surface Q = 4π(sinθ)/λ.23 The 
Levenberg-Marquardt method was used to minimize χ2 values in 
the fitting routines.  

2.2.2 Spectroscopic ellipsometry 95 

Ellipsometric spectra were recorded using a variable angle 
spectroscopic ellipsometer (M-2000X-210, J. A. Woollam Co., 
Inc., USA) at three different angles of incidence (65°, 70°, and 
75° to the surface normal) over the 250–1000 nm wavelength 
range (4.96–1.24 eV). The values of refractive index (n) and 100 

imaginary refractive index (k) for bare (i.e., Si–H) phosphorous- 
and boron-doped reference substrates were taken before analysis. 
Acquired data on the changes in light polarization at the 
air/monolayer/substrate interfaces were modelled using the 
Cauchy approximation in the WVASE 32® software package, and 105 

were used to extract monolayer thickness values. Measurements 
of at least four different points on each surface were carried out 
and were found to be within 1 Å of the reported average. The 
sample-to-sample reproducibility was within 2 Å. 

2.2.3 Electrochemical characterization 110 

Electrochemical experiments were performed in a PTFE three-
electrode cell with the modified silicon surface as the working 
electrode, a platinum mesh (ca. 1200 mm2) as the counter 
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CuAAC “click” reactions at the electrode surface (Scheme 1). 
Beginning with the latter, the Fe 2p3/2 and Fe 2p1/2 peaks, clearly 
visible at 708.4 and 721.4 eV in the high-resolution XPS 
spectrum (Fig. 4a) are consistent with values reported in the 
literature,68, 69 and supports the formation of the ferrocene layer. 5 

From the comparison of XPS- and stoichiometrically-derived 
Fe:N and N:(C−O/−N)70 atomic ratios it is possible to infer that 
the molecular nature of the ferrocene molecule is not appreciably 
altered upon its immobilization. C 1s and N 1s XPS data19 (Fig. 
4c-d) agrees with the conversion of surface acetylenes moieties to 10 

the putative surface CuAAC product, and the approximate 
fractional monolayer coverage of SiOx varied from not detectable 
(<0.06) to ca. 0.2 monolayers equivalents (Fig. 4d). The presence 
of silicon oxide signals in the 102–104 eV region of the XPS 
spectra are indicative of a passivation of the semiconductor 15 

surface that is inferior to the one that can be achieved by thermal 
reactions of aliphatic α,ω-dialkynes.21 It is noteworthy, however, 
that despite the presence of silica contaminations the redox films 
exhibited remarkably stable cyclic voltammetric peaks,71 
attributable to the ferrocene/ferricenium surface reaction, and 20 

surface coverages values, Γ, that ranged from ca. 1.8 × 10–11 to 
ca. 2.5 × 10–11mol cm–2 (Fig. 5a). This coverage is in the range 
40–56 % of that expected for a hexagonally close-packed full 
monolayer of ferrocene molecules, assuming the molecule to be 
spherical with a diameter of 0.66 nm.66 25 

 Modular schemes offer considerable synthetic versatility but at 
the risk a multi-step chemistry leading to reduction of the 
electronic coupling between the redox element and the substrate. 
For this reason we measured the kinetics of the 
electrochemically-initiated ET between the electrode and the 30 

ferrocene moiety using electrochemical impedance spectroscopy 
(EIS).72 Fig. 5b shows the Bode representations of the impedance 
data at either Edc ~ E'0 in Fig. 5b, or at Edc ~ 0 V vs reference in 
Fig. 5c (Edc, dc offset). For strongly adsorbed electroactive 
species the relationship between the circuit elements (Cdl, double-35 

layer capacitance; Cads, adsorption pseudo-capacitance; Rct, 
charge transfer resistance)73 of and the kinetic parameters 
characterizing a redox system has been described in literature.74-78 
Using the refined Rct and Cads values, we obtained a k°etvalue of 8 
± 2 s−1. This value indicates ET kinetics that are comparable to 40 

that of aliphatic films20 of comparable length.79 
 At a sufficiently cathodic applied dc potential (Edc = 0 V, Fig. 
5c), the phase angle of the Bode plots adopts a sigmoid shape that 
starts near 0° at high frequency and shifts close to 90° at 
frequencies of <100 Hz. An ideal series RC circuit would have 45 

the lower-frequency points at 90° because the response is 
dominated by the double-layer capacitance charging. The EIS 
data thus suggest a blocking or insulating monolayer that can be 
modelled using a circuit that does not model a charge-transfer 
reaction but describes a polarizing electrode77 (i.e. with two terms 50 

Rs and Cdl in series).80 

Conclusions 
Our experimental observations points to a strategy to overcome 
the generally higher reactivity of n-type semiconductor Si 
surfaces toward attack by nuclueophilic adsorbates, and expands 55 

the available repertoire of mild wet chemistry routes to functional 
surfaces. 

 All non-oxide semiconductors are susceptible to anodic 
degradation and the DEB passivation of the Si(100) electrode as 
achieved by dark and room temperature hydrosilylation reactions 60 

remains poor when compared to alternative grafting methods.3 
However, we believe the exceedingly mild monolayer-forming 
conditions reported in this paper are remarkable and will 
stimulate further experimental scrutiny. Notably, films 
incorporating phenyl rings and bi-functional contacts also hold 65 

considerable advantages when making top contacts in molecular 
devices.81 
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