Jump to main content
Jump to site search

Issue 16, 2005
Previous Article Next Article

Hyperpolarized 129Xe NMR investigation of multifunctional organic/inorganic hybrid mesoporous silica materials

Author affiliations

Abstract

An extensive study has been made on a series of multifunctional mesoporous silica materials, prepared by introducing two different organoalkoxysilanes, namely 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane (AEPTMS) and 3-cyanopropyltriethoxysilane (CPTES) during the base-catalyzed condensation of tetraethoxysilane (TEOS), using the variable-temperature (VT) hyperpolarized (HP) 129Xe NMR technique. VT HP-129Xe NMR chemical shift measurements of adsorbed xenon revealed that surface properties as well as functionality of these AEP/CP-functionalized microparticles (MP) could be controlled by varying the AEPTMS/CPTES ratio in the starting solution during synthesis. Additional chemical shift contribution due to Xe-moiety interactions was observed for monofunctional AEP-MP and CP-MP as well as for bifunctional AEP/CP-MP samples. In particular, unlike CP-MP that has a shorter organic backbone on the silica surface, the amino groups in the AEP chain tends to interact with the silanol groups on the silica surface causing backbone bending and hence formation of secondary pores in AEP-MP, as indicated by additional shoulder peak at lower field in the room-temperature 129Xe NMR spectrum. The exchange processes of xenon in different adsorption regions were also verified by 2D EXSY HP-129Xe NMR spectroscopy. It is also found that subsequent removal of functional moieties by calcination treatment tends to result in a more severe surface roughness on the pore walls in bifunctional samples compared to monofunctional ones. The effect of hydrophobicity/hydrophilicity of the organoalkoxysilanes on the formation, pore structure and surface property of these functionalized mesoporous silica materials are also discussed.

Graphical abstract: Hyperpolarized 129Xe NMR investigation of multifunctional organic/inorganic hybrid mesoporous silica materials

Back to tab navigation

Article information


Submitted
04 May 2005
Accepted
16 Jun 2005
First published
07 Jul 2005

Phys. Chem. Chem. Phys., 2005,7, 3080-3087
Article type
Paper

Hyperpolarized 129Xe NMR investigation of multifunctional organic/inorganic hybrid mesoporous silica materials

S. Huang, S. Huh, P. Lo, S. Liu, V. S.-Y. Lin and S. Liu, Phys. Chem. Chem. Phys., 2005, 7, 3080
DOI: 10.1039/B506280B

Social activity

Search articles by author

Spotlight

Advertisements