Issue 16, 2005

On two alternative mechanisms of ethane activation over ZSM-5 zeolite modified by Zn2+ and Ga1+cations

Abstract

The activation of ethane over zinc- and gallium-modified HZSM-5 dehydrogenation catalysts was studied by diffuse reflectance infrared spectroscopy. Hydrocarbon activation on HZSM-5 modified by bivalent Zn and univalent Ga cations proceeds via two distinctly different mechanisms. The stronger molecular adsorption of ethane by the acid–base pairs formed by distantly separated cationic Zn2+ and basic oxygen sites results already at room temperature in strong polarizability of adsorbed ethane and subsequent heterolytic dissociative adsorption at moderate temperatures. In contrast, molecular adsorption of ethane on Ga+ cations is weak. At high temperatures dissociative hydrocarbon adsorption takes place, resulting in the formation of ethyl and hydride fragments coordinating to the cationic gallium species. Whereas in the zinc case a Brønsted acid proton is formed upon ethane dissociation, decomposition of the ethyl fragment on gallium results in gallium dihydride species and does not lead to Brønsted acid protons. This difference in alkane activation has direct consequences for hydrocarbon conversions involving dehydrogenation.

Graphical abstract: On two alternative mechanisms of ethane activation over ZSM-5 zeolite modified by Zn2+ and Ga1+ cations

Article information

Article type
Paper
Submitted
12 May 2005
Accepted
29 Jun 2005
First published
14 Jul 2005

Phys. Chem. Chem. Phys., 2005,7, 3088-3092

On two alternative mechanisms of ethane activation over ZSM-5 zeolite modified by Zn2+ and Ga1+ cations

V. B. Kazansky, I. R. Subbotina, N. Rane, R. A. van Santen and E. J. M. Hensen, Phys. Chem. Chem. Phys., 2005, 7, 3088 DOI: 10.1039/B506782K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements