Grouping nanoparticles based on properties and transcriptomic response: are we dealing with a single nanoform or a set of nanoforms with common pulmonary hazards?
Abstract
The safety of titanium dioxide nanoparticles (TiO2 NPs) has been a subject of debate for over two decades, primarily due to the lack of consensus on their toxicity. A comprehensive understanding of the molecular-level toxicity of TiO2 NPs is essential for accurate safety evaluations and effective risk mitigation strategies. Thus, this study aims to elucidate the relationship between the physicochemical properties of TiO2 NPs and their pulmonary toxicity at the molecular level. Additionally, it seeks to determine whether these properties and the corresponding transcriptomic responses can facilitate the categorization of TiO2 nanoforms into groups with similar pulmonary hazards. Through the integration of bioinformatics and machine learning algorithms to analyze genome-wide transcriptomic profiles, we identified size, specific surface area, reactive oxygen species (ROS) production, crystalline structure, and surface modification as key determinants of TiO2 NP toxicity at the transcriptomic level. Furthermore, we observed that different nanoforms of TiO2 NPs, characterized by varying properties, can elicit distinct molecular-level responses, indicating that transcriptomic pathways are subject to different modes of perturbation. Our findings offer valuable insights into the safety considerations of TiO2 NPs and lay the groundwork for future strategies to group nanoforms with similar patterns of hazards.

Please wait while we load your content...