Issue 1, 2026

Innovative green nanotechnology for sustainable water purification under climate change: tackling antibiotic contaminants

Abstract

Antibiotic contamination represents a pressing environmental crisis affecting aquatic ecosystems globally, a challenge that climate change only intensifies. Key culprits of this pollution include pharmaceutical discharges, agricultural runoff, and improper waste disposal. These antibiotics persist in our water systems due to their stable chemical structures, while climate-related factors like rising temperatures and extreme weather can exacerbate their impact. The accumulation of these substances poses significant threats to aquatic life, human health, and the broader environment, as they facilitate the alarming spread of antimicrobial resistance among microorganisms. Unfortunately, traditional water treatment methods remain largely ineffective against these stubborn pollutants. In response to this growing issue, green nanotechnology emerges as a promising and sustainable solution. By harnessing plant extracts, microbes, and agricultural waste for the synthesis of nanoparticles, this approach minimizes environmental harm while effectively addressing contamination. Metal oxide nanoparticles, carbon-based materials, and biopolymeric nanomaterials have proven to be highly efficient in eliminating antibiotics through processes such as adsorption, photodegradation, and redox reactions. However, the effectiveness and applicability of these nanoparticles under varying climate conditions warrant further exploration. This review highlights the transformative potential of green nanotechnology for safe and sustainable water remediation. It underscores recent advancements in eco-friendly nanomaterials, elucidating their removal mechanisms, environmental behavior, and the critical need for climate-resilient, safe-by-design strategies. To combat antibiotic pollution effectively amid shifting climatic conditions, we must investigate green nanotechnology for future water treatment practices. This proactive approach not only safeguards our water systems but also ensures a healthier future for both aquatic ecosystems and human communities.

Graphical abstract: Innovative green nanotechnology for sustainable water purification under climate change: tackling antibiotic contaminants

Article information

Article type
Critical Review
Submitted
15 Oct 2025
Accepted
11 Dec 2025
First published
02 Jan 2026

Environ. Sci.: Nano, 2026,13, 150-183

Innovative green nanotechnology for sustainable water purification under climate change: tackling antibiotic contaminants

N. H. Madushika, I. Munaweera, G. Y. Liyanage, P. Jayawardane and P. M. Manage, Environ. Sci.: Nano, 2026, 13, 150 DOI: 10.1039/D5EN00956A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements