Issue 24, 2024

Machine learning assisted layer-controlled synthesis of MoS2

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant interest due to their intriguing physical, chemical, electronic and optical properties. However, the practical applications of TMDs are limited by challenges related to controlling the thickness of atomic layers. Machine learning (ML), a data-driven approach characterized by extensive search capabilities and accurate classification, offers a promising approach to address this limitation. In this study, a prediction model was constructed using four machine learning algorithms, namely XGBoost, Support Vector Machine (SVM), Naïve Bayes (NB), and Multilayer Perceptron (MLP), to explore the growth mechanism of MoS2 material layers prepared through chemical vapor deposition (CVD). Furthermore, the models were evaluated using performance assessment metrics such as recall, specificity, accuracy, and ROC curve. The results showed that the MLP model had the highest prediction accuracy, up to 75%, and an AUC of 0.8. The XGBoost model was used to extract the feature importance of growth parameters, revealing that the temperature of the precursor molybdenum source (MoT), reaction temperature (T), and reaction time (t) were the main factors affecting the growth of MoS2 layers. Finally, we use virtual data to predict the results and delineate the range of each growth condition, with 50% of predicted results as the dividing line. The optimization of growth conditions through machine learning algorithms holds promise for enhancing control over the preparation of MoS2 layers, thereby facilitating the development of electronic and optoelectronic devices.

Graphical abstract: Machine learning assisted layer-controlled synthesis of MoS2

Article information

Article type
Paper
Submitted
22 Mar 2024
Accepted
30 May 2024
First published
30 May 2024

J. Mater. Chem. C, 2024,12, 8893-8900

Machine learning assisted layer-controlled synthesis of MoS2

M. Lu, H. Ji, Y. Chen, F. Gao, B. Liu, P. Long, C. Deng, Y. Wang and J. Tao, J. Mater. Chem. C, 2024, 12, 8893 DOI: 10.1039/D4TC01139B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements