Linker installation transformations in a 2-D rare earth MOF: increase of the dimensionality and turn on of the temperature sensing capability†
Abstract
A new family of 2-D 8-connected rare earth (RE) MOFs based on a hexanuclear (RE3+)6 secondary building unit (SBU), the increase of the dimensionality through single-crystal-to-single-crystal (SCSC) linker installation reactions and the turn-on of the temperature sensing capability upon these reactions are reported. The reaction of RE(NO3)3 with 4,4′-(hydroxymethylene)dibenzoic acid (H2BCPM) in the presence of 2-fluorobenzoic acid (HFBA) in DMF/H2O at 115 °C afforded compounds [RE6(μ3-OH−/F−)8(BCPM)4(NO3)2(H2O)4]n (UCY-17(RE); RE: Y, Gd, Tb, Dy, Ho, Er) which represent rare examples of 2D 8-c MOFs based on a hexanuclear (RE3+)6 SBU. The excellent quality of single crystals of UCY-17(Tb) and the distance between the terminal nitrate ions prompted us to investigate the SCSC exchange of NO3− anions by various dicarboxylate ligands aiming to bridge adjacent 2D nanosheets and form 3-D analogues. These SCSC linker installation reactions afforded a series of 3-D, 10-connected mixed linker MOFs with the general formulae [RE6(μ3-OH−/F−)8(BCPM)4(L)(H2O)4]n (UCY-17(Tb)/L; H2L = H2BDC (1,4-benzenedicarboxylic acid), H2ABDC (2-aminobenzene-1,4-dicarboxylic acid), H2FBDC (2-fluorobenzene-1,4-dicarboxylic acid), and H2NDC (1,4-naphthalenedicarboxylic acid)). The exchanged analogues of UCY-17(Gd) and UCY-17(Eu0.05Tb0.95) were synthesized and the thermometric properties of the latter were investigated. These studies revealed that there is no thermal evolution of the emission properties for the pristine MOF UCY-17(Eu0.05Tb0.95) whereas the exchanged analogues exhibit significant thermometric properties at higher temperatures (>270 K). The maximum thermal sensitivity of most exchanged derivatives appears at physiological temperatures and ranges between 300 and 355 K. Overall, this work proposes a promising strategy for increasing the dimensionality of 2-D MOFs and controlling the thermometric performances of mixed Eu0.05Tb0.95 MOFs.
- This article is part of the themed collections: Journal of Materials Chemistry C HOT Papers and Fundamentals and Applications of Functional Framework Materials