Issue 15, 2023

Piezo-phototronic effect regulated broadband photoresponse of a-Ga2O3/ZnO heterojunction

Abstract

Amorphous Ga2O3 (a-Ga2O3) films have attracted considerable attention in the field of photodetectors due to their excellent optical absorption response and photoelectric properties. However, there are few studies that have utilized the piezo-phototronic effect to regulate the broadband photoresponse of Ga2O3-based photodetectors. Here, a flexible a-Ga2O3/ZnO heterojunction was constructed, which demonstrated a broadband response range from deep ultraviolet (265 nm) to the near-infrared (1060 nm) and realized a bidirectional adjustable photocurrent response via the piezo-phototronic effect. Under 265 nm illumination and 0.5 V bias, the responsivity and detectivity of the a-Ga2O3/ZnO heterojunction reached up to 12.19 A W−1 and 4.71 × 1011 Jones under 0.164% compressive strain, corresponding to enhancements of 67.7% and 66.8% compared to those under a strain-free state, respectively. Moreover, the broadband photoresponse of the a-Ga2O3/ZnO heterojunction beyond the bandgap limit was tunable under bidirectional strain. The working mechanism of photoresponse performance for the a-Ga2O3/ZnO heterojunction at different wavelengths was elucidated in detail. Oxygen vacancy-assisted carrier generation was found to be influenced by the wavelength of incident light, which mainly determined the broadband photoresponse of the heterojunction. The modulation of the a-Ga2O3/ZnO heterojunction photodetector was interpreted in light of the strain-induced regulation of the barrier height. This work represents an important step toward the development of adjustable broadband photodetectors based on a-Ga2O3 films.

Graphical abstract: Piezo-phototronic effect regulated broadband photoresponse of a-Ga2O3/ZnO heterojunction

Supplementary files

Article information

Article type
Paper
Submitted
16 Feb 2023
Accepted
15 Mar 2023
First published
15 Mar 2023

Nanoscale, 2023,15, 7068-7076

Piezo-phototronic effect regulated broadband photoresponse of a-Ga2O3/ZnO heterojunction

J. Wang, Y. Zhou, Z. Wang, B. Wang, Y. Li, B. Wu, C. Hao, Y. Zhang and H. Zheng, Nanoscale, 2023, 15, 7068 DOI: 10.1039/D3NR00744H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements