Issue 15, 2023

A comprehensive investigation of the plasmonic-photocatalytic properties of gold nanoparticles for CO2 conversion to chemicals

Abstract

Understanding the interactions between plasmonic gold (Au) nanoparticles and the adsorbate is essential for photocatalytic and plasmonic applications. However, it is often challenging to identify a specific reaction mechanism in the ground state and to explore the optical properties in the excited states because of the complicated pathways of carriers. In this study, photocatalytic reduction of carbon dioxide (CO2) to C1 products (for example, CO and CH4) on the Au(111) nanoparticle (NP) surface was studied based on reaction pathway analysis, adsorbate reactivity, and its ability to stabilize or deactivate the surface. The calculated reaction Gibbs free energies and activation barriers revealed that the first step in CO reduction via a direct hydrogen transfer mechanism on Au(111) is the formation of formyl (*CHO) instead of hydroxymethylidyne (*COH). Furthermore, the size enhanced and symmetry sensitive optical responses of cuboctahedral Au(111) NPs on localized surface plasmon resonance (LSPR) were investigated by using time-dependent DFT (TDDFT) calculations. Although near field enhancement around cuboctahedral Au(111) NPs is only weakly dependent on the morphology of NPs, it was observed that corner sites stabilize *C-species to drive the CO2 reduction to CO. The density of active surface states interacting with the adsorbate states near the Fermi level gradually decreases from the (111) on-top site toward the corner site of the Au(111) NP–CO system, which strongly affects the molecule's binding on catalytic sites and, in particular, electronic excitation. Finally, the spatial distribution of the charge oscillations was determined as a guide for the fabrication of Au NPs with an optimal LSPR response.

Graphical abstract: A comprehensive investigation of the plasmonic-photocatalytic properties of gold nanoparticles for CO2 conversion to chemicals

Article information

Article type
Paper
Submitted
06 Feb 2023
Accepted
01 Mar 2023
First published
02 Mar 2023

Nanoscale, 2023,15, 7051-7067

A comprehensive investigation of the plasmonic-photocatalytic properties of gold nanoparticles for CO2 conversion to chemicals

M. Soleimani and M. Pourfath, Nanoscale, 2023, 15, 7051 DOI: 10.1039/D3NR00566F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements