Issue 3, 2022, Issue in Progress

Prediction of intermediate band in Ti/V doped γ-In2S3

Abstract

Materials with an intermediate energy band (IB) introduced in the forbidden gap are viable alternatives to tandem configurations of solar cells for increasing the photon-conversion efficiency. One of the aspiring designs proposed for the intermediate band concept is hyperdoped (Ti, V):In2S3. Being very important in copper indium gallium sulfide (CIGS) solar cells, indium thiospinel (In2S3) is known for its three different temperature as well as pressure, polymorphs. The most stable β-In2S3 was experimentally shown to have an isolated intermediate band (IB) and exhibits sub-band gap absorption due to the completely filled IB after V-doping. Though experimental observation holds a positive signature, recent DFT studies did not show a metallic intermediate band for the V dopant in the 3+ charge state. In order to clarify this, we have taken incentive from experimental XRD analysis that V-doped β-In2S3 shows peaks from disordered In vacancies (either α or γ), in addition to the ordered In vacancies expected. Hence, we have carried out state-of-the-art DFT based computations on pure and Ti, V-doped In2S3 in the γ-phase which has not been studied yet. We considered the Ti and V dopants in various charge states. Our theoretical study including hybrid functional, does in fact find the IB in V-doped γ-In2S3. However, at equilibrium the IB lies in between the Fermi level (EF) and conduction band minimum (CBM).

Graphical abstract: Prediction of intermediate band in Ti/V doped γ-In2S3

Article information

Article type
Paper
Submitted
23 Sep 2021
Accepted
12 Dec 2021
First published
06 Jan 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 1331-1340

Prediction of intermediate band in Ti/V doped γ-In2S3

R. M. Jebasty, A. O. Sjåstad and R. Vidya, RSC Adv., 2022, 12, 1331 DOI: 10.1039/D0RA08132A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements