Issue 21, 2022

Effect of a layer-by-layer assembled ultra-thin film on the solid electrolyte and Li interface

Abstract

Advanced all-solid-state batteries are considered as the most preferable power source for the next generation devices. Such batteries demand consumption of electrode materials with high energy and power density. One of the excellent solutions is the utilization of Li metal as anode which provides opportunity to fulfill such requirements. Yet, obstacles such as interfacial impedance and reactivity of Li metal with promising solid electrolytes prevent the consumption of the Li anode. Despite its outstanding stability under ambient conditions, high ionic conductivity and facile synthesis methods, NASICON-type Li1.3Al0.3Ti1.7(PO4)3 also suffers from the above mentioned problems. In this work, these critical issues were resolved by applying an artificial protective interlayer. Herein, the layer-by-layer polymer assembly approach of the ultra-thin interlayer of (PAA/PEO)30 on either side of solid electrolyte pellets simultaneously is presented. The introduction of the protective layer prevented a formation of mixed conduction interphase and effectively decreased the interfacial impedance. A symmetric cell with Li metal electrodes performed over 600 hours at 0.1 mA cm−2. Furthermore, an all-solid-state Li metal battery, assembled with the modified LATP solid electrolyte and LiFePO4 cathode, demonstrated an excellent electrochemical performance with an initial discharge capacity of 115 mA h g−1 and a capacity retention of 93% over 20 cycles with a coloumbic efficiency of almost 100%. The LATP with the (PAA/PEO)30 coating exhibited electrochemical stability up to 5 V.

Graphical abstract: Effect of a layer-by-layer assembled ultra-thin film on the solid electrolyte and Li interface

Article information

Article type
Paper
Submitted
05 Aug 2022
Accepted
09 Sep 2022
First published
14 Sep 2022
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2022,4, 4606-4616

Effect of a layer-by-layer assembled ultra-thin film on the solid electrolyte and Li interface

N. Tolganbek, M. Sarsembina, A. Nurpeissova, K. Kanamura, Z. Bakenov and A. Mentbayeva, Nanoscale Adv., 2022, 4, 4606 DOI: 10.1039/D2NA00521B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements