Issue 20, 2022

Maternal propionate supplementation ameliorates glucose and lipid metabolic disturbance in hypoxia-induced fetal growth restriction

Abstract

Intrauterine growth restriction (IUGR), one of the major complications of pregnancy, is characterized by low birth weight and results in higher risks for long-term problems including developing metabolic and cardiovascular diseases. Short-chain fatty acids (SCFAs), especially propionate, have been reported to correct glucose and lipid disorders in metabolic diseases. We hypothesized that maternal propionate supplementation could prevent glucose and lipid metabolic disturbance in hypoxia-induced IUGR. Here, in our study, maternal hypoxia was induced from gestational day (GD) 11 to GD 17.5 to establish an IUGR mouse model. Maternal propionate treatment reversed reduced birth weight in male IUGR offspring. Hepatic transcriptomics demonstrated that SP treatment significantly lowered glucose and lipid metabolism-related genes (Scd1, G6pc, Pck1 and Fasl) in IUGR offspring. KOG enrichment analysis showed that propionate-induced down-regulated differential expressed genes (DEGs) mainly belonged to lipid transport and metabolism. KEGG enrichment results showed that the down-regulated DEGs were mostly enriched in PPAR and FoxO signaling pathways. We also found that maternal oral administration of SP decreased serum lipid content, attenuated hepatic insulin resistance and liver lipid accumulation, reduced hepatic key gene expressions of gluconeogenesis and lipogenesis, increased energy expenditure and improved liver function in 11-week-old male IUGR offspring. These results indicate that maternal propionate supplementation increases birth weight and corrects hepatic glucose and lipid metabolic disturbance and energy expenditure in male mice born with IUGR, which may provide a basis for using propionate to treat IUGR disease.

Graphical abstract: Maternal propionate supplementation ameliorates glucose and lipid metabolic disturbance in hypoxia-induced fetal growth restriction

Supplementary files

Article information

Article type
Paper
Submitted
30 May 2022
Accepted
22 Sep 2022
First published
22 Sep 2022

Food Funct., 2022,13, 10724-10736

Maternal propionate supplementation ameliorates glucose and lipid metabolic disturbance in hypoxia-induced fetal growth restriction

D. Chen, Y. Wang, S. Li, H. Zhao, F. Jiang, Y. Wu, Y. Tong and Q. Pang, Food Funct., 2022, 13, 10724 DOI: 10.1039/D2FO01481E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements