Issue 42, 2022

Deep insights into the viscosity of deep eutectic solvents by an XGBoost-based model plus SHapley Additive exPlanation

Abstract

Deep eutectic solvents (DESs) are emerging as novel green solvents for the processes of mass transport and heat transfer, in which the viscosity of DESs is important for their industrial applications. However, for DESs, the measurement of viscosity is time-consuming, and there are many factors influencing the viscosity, which impedes their wider application. This study aims to develop a data-driven model which could accurately and rapidly predict the viscosity of diverse DESs at different temperatures, and furthermore boost the design and screening of novel DESs. In this work, we collected 107 DESs with 994 experimental values of viscosity from published works. Given the significant effect of water on viscosity, the water content of each collected DES was labeled. The Morgan fingerprint was first employed as a feature to describe the chemical environment of DESs. And four machine learning algorithms were used to train models: support vector regression (SVR), random forest (RF), neural network (NN), and extreme gradient boosting (XGBoost), and XGBoost showed the best predictive performance. In combination with the powerful interpretation method SHapley Additive exPlanation (SHAP), we further revealed the positive or negative effect of features on viscosity. Overall, this work provides a machine learning model which could predict viscosity precisely and facilitate the design and application of DESs.

Graphical abstract: Deep insights into the viscosity of deep eutectic solvents by an XGBoost-based model plus SHapley Additive exPlanation

Supplementary files

Article information

Article type
Paper
Submitted
26 Jul 2022
Accepted
04 Oct 2022
First published
04 Oct 2022

Phys. Chem. Chem. Phys., 2022,24, 26029-26036

Deep insights into the viscosity of deep eutectic solvents by an XGBoost-based model plus SHapley Additive exPlanation

D. Shi, F. Zhou, W. Mu, C. Ling, T. Mu, G. Yu and R. Li, Phys. Chem. Chem. Phys., 2022, 24, 26029 DOI: 10.1039/D2CP03423A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements