CH2 + O2: reaction mechanism, biradical and zwitterionic character, and formation of CH2OO, the simplest Criegee intermediate†
Abstract
The singlet and triplet potential surfaces for the title reaction were investigated using the CBS-QB3 level of theory. The wave functions for some species exhibited multireference character and required the CASPT2/6-31+G(d,p) and CASPT2/aug-cc-pVTZ levels of theory to obtain accurate relative energies. A Natural Bond Orbital Analysis showed that triplet 3CH2OO (the simplest Criegee intermediate) and 3CH2O2 (dioxirane) have mostly polar biradical character, while singlet 1CH2OO has some zwitterionic character and a planar structure. Canonical variational transition state theory (CVTST) and master equation simulations were used to analyze the reaction system. CVTST predicts that the rate constant for reaction of 1CH2 + 3O2 is more than ten times as fast as the reaction of 3CH2 (X3B1) + 3O2 and the ratio remains almost independent of temperature from 900 K to 3000 K. The master equation simulations predict that at low pressures the 1CH2O + 3O product set is dominant at all temperatures and the primary yield of OH radicals is negligible below 600 K, due to competition with other primary reactions in this complex system.