Issue 14, 2022

Indole-substituted flavonol-based cysteine fluorescence sensing and subsequent precisely controlled linear CO liberation

Abstract

The first water-soluble B-ring-indole-substituted flavonol-based cysteine (Cys) fluorescent probe, MICA (2-(1-methyl-1H-indol-3-yl)-4-oxo-4H-chromen-3-yl-acrylate), was developed, which simultaneously serves as a precursor of photoCORM. In PBS buffer (only 15% DMF), MICA can perform rapid (330 s), highly chemoselective (particularly for homocysteine and glutathione) and sensitive (limit of detection: 92 nM) sensing and visualization of exogenous and endogenous Cys in live HeLa cells and zebrafish over a wide linear concentration range (0–12 μM/2.4 equiv.). The fluorophore HMIC (3-hydroxy-2-(1-methyl-1H-indol-3-yl)-4H-chromen-4-one), actuated and quantitatively generated via the sensing reaction of the precursor MICA with Cys, was designed as a photoCORM. By modulating the light illumination intensity or illumination duration or photoCORM dosage, HMIC can provide precisely controlled quantitative and linear CO gas by visible light illumination in aerobic environments. For live HeLa cells, MICA and all reaction products showed low toxicity (over 85% cell viability versus 10 μM analyst) and efficient cellular uptake. In live HeLa cells and zebrafish, both exogenous and endogenous Cys can be visualized by MICA, and the location and CO liberation process of the generated HMIC can be tracked in real time through its fluorescence. Substitution of the B-ring of 3-hydroxy-flavone (3-FL) by indole results in a 52 nm absorption red-shift vs.3-FL. Our work is the first water-soluble B-ring-indole-substituted flavonol-based fluorescent probe that efficaciously detects and visualizes exogenous and endogenous Cys both in vitro and in vivo, simultaneously serving as a precursor of photoCORM, actuated by Cys and triggered by visible light, releasing linear CO in aerobic environments. This work not only provides promising applications for the detection and visualization of exogenous and endogenous Cys, and spatiotemporally controllable CO liberation in live systems, but will also facilitate the development of handy molecular tools for clinical diagnosis and CO gas therapy.

Graphical abstract: Indole-substituted flavonol-based cysteine fluorescence sensing and subsequent precisely controlled linear CO liberation

Supplementary files

Article information

Article type
Paper
Submitted
10 Apr 2022
Accepted
27 Apr 2022
First published
28 Jun 2022

Analyst, 2022,147, 3360-3369

Indole-substituted flavonol-based cysteine fluorescence sensing and subsequent precisely controlled linear CO liberation

Y. Sun, D. Zhao and B. Song, Analyst, 2022, 147, 3360 DOI: 10.1039/D2AN00631F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements