Issue 37, 2021

The power of trichlorosilylation: isolable trisilylated allyl anions, allyl radicals, and allenyl anions

Abstract

Treatment of hexachloropropene (Cl2C[double bond, length as m-dash]C(Cl)–CCl3) with Si2Cl6 and [nBu4N]Cl (1 : 4 : 1) in CH2Cl2 results in a quantitative conversion to the trisilylated, dichlorinated allyl anion salt [nBu4N][Cl2C[double bond, length as m-dash]C(SiCl3)–C(SiCl3)2] ([nBu4N][1]). Tetrachloroallene Cl2C[double bond, length as m-dash]C[double bond, length as m-dash]CCl2 was identified as the first intermediate of the reaction cascade. In the solid state, [1] adopts approximate Cs symmetry with a dihedral angle between the planes running through the olefinic and carbanionic fragments of [1] of C[double bond, length as m-dash]C–Si//Si–C–Si = 78.3(1)°. One-electron oxidation of [nBu4N][1] with SbCl5 furnishes the distillable blue radical 1˙. The neutral propene Cl2C[double bond, length as m-dash]C(SiCl3)–C(SiCl3)2H (2) was obtained by (i) protonation of [1] with HOSO2CF3 (HOTf) or (ii) H-atom transfer to 1˙ from 1,4-cyclohexadiene. Quantitative transformation of all three SiCl3 substituents in 2 to Si(OMe)3 (2OMe) or SiMe3 (2Me) substituents was achieved by using MeOH/NMe2Et or MeMgBr in CH2Cl2 or THF, respectively. Upon addition of 2 equiv. of tBuLi, 2Me underwent deprotonation with subsequent LiCl elimination, 1,2-SiMe3 migration and Cl/Li exchange to afford the allenyl lithium compound Me3Si(Li)C[double bond, length as m-dash]C[double bond, length as m-dash]C(SiMe3)2 (Li[4]), which is an efficient building block for the introduction of Me, SiMe3, or SnMe3 (5) groups. The trisilylated, monochlorinated allene Cl3Si(Cl)C[double bond, length as m-dash]C[double bond, length as m-dash]C(SiCl3)2 (6), was obtained from [nBu4N][1] through Cl-ion abstraction with AlCl3 and rearrangement in CH2Cl2 (1˙ forms as a minor side product, likely because the system AlCl3/CH2Cl2 can also act as a one-electron oxidant).

Graphical abstract: The power of trichlorosilylation: isolable trisilylated allyl anions, allyl radicals, and allenyl anions

Supplementary files

Article information

Article type
Edge Article
Submitted
20 Jul 2021
Accepted
13 Aug 2021
First published
13 Aug 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 12419-12428

The power of trichlorosilylation: isolable trisilylated allyl anions, allyl radicals, and allenyl anions

I. Georg, M. Bursch, B. Endeward, M. Bolte, H. Lerner, S. Grimme and M. Wagner, Chem. Sci., 2021, 12, 12419 DOI: 10.1039/D1SC03958J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements