Issue 41, 2021, Issue in Progress

Cationic polymer-grafted graphene oxide/CNT cathode-coating material for lithium–sulfur batteries

Abstract

A cathode-coating material composed of cationic polymer-grafted graphene oxide (CPGO) and carbon nanotube (CNT) was prepared, where the CPGO was synthesized by grafting quaternized 2-(dimethylamino)ethyl methacrylate (QDMAEMA) onto graphene oxide (GO) via atom transfer radical polymerization (ATRP). GO has good compatibility with carbon black, the main component of the cathode in lithium–sulfur (Li–S) batteries. Here, the cationic polymer having the QDMAEMA unit was intentionally grafted onto GO to decrease the shuttle effect by increasing the chemical adsorption of polysulfide (PS). In addition, when CNT was mixed with CPGO, the compatibility with carbon black was found to be further increased. The lithium–sulfur (Li–S) battery with a sulfur-deposited Super P® carbon black (S/C) cathode coated with a mixture of CPGO and CNT was found to have much improved cell performance compared to those coated without any coating material, with only CPGO, with the mixture of GO and CNT, and with the mixture of PQDMAEMA and CNT. For example, the Li–S battery with the cathode coated using the mixture of CPGO and CNT retained a discharge capacity of 744 mA h g−1 after 50 cycles at 0.2C-rate, while those of the Li–S batteries with bare S/C and CPGO-S/C cathodes were found to be much smaller, i.e., 488 mA h g−1 and 641 mA h g−1, respectively, under the same conditions. Therefore, the mixture of CPGO with CNT as the cathode-coating material showed a synergetic effect to enhance the cell performance of the Li–S battery system.

Graphical abstract: Cationic polymer-grafted graphene oxide/CNT cathode-coating material for lithium–sulfur batteries

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2021
Accepted
05 Jul 2021
First published
21 Jul 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 25305-25313

Cationic polymer-grafted graphene oxide/CNT cathode-coating material for lithium–sulfur batteries

D. Jeong, D. G. Hong, J. Yook, C. Y. Koong, S. Kim, K. Kim, K. Sohn and J. Lee, RSC Adv., 2021, 11, 25305 DOI: 10.1039/D1RA03744G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements