Issue 22, 2021, Issue in Progress

Enhanced gas separation and mechanical properties of fluorene-based thermal rearrangement copolymers

Abstract

A series of thermal rearrangement (TR) copolymer membranes were prepared by the copolymerization of 9,9-bis(3-amino-4-hydroxyphenoxyphenyl) fluorene (BAHPPF), 9,9-bis(3-amino-4-hydroxyphenyl)fluorene (BAHPF) and 2,2′-bis(3,4′-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA), followed by thermal imidization and further thermal rearrangement. The effects of molar ratio of diamines on the structure and properties of copolymer membranes were studied. The copolymer precursors CP-4:6 and CP-5:5 exhibited excellent mechanical properties. The mechanical properties of precursor membranes rapidly decreased with the increase of thermal treatment temperatures, but the tensile strength of TRCP-4:6 still reached 21.2 MPa. In general, the gas permeabilities of TR copolymers increased with the increase of BAHPF content. Comparatively, TRCP-3:7 and TRCP-4:6 showed higher gas permeabilities, coupled with high O2/N2 and CO2/CH4 selectivities. Especially, the H2, CO2, O2, N2 and CH4 permeabilities of TRCP-4:6 reached 244.4, 269.0, 46.8, 5.20 and 4.60 Barrers respectively, and the selectivities for CO2/CH4 and O2/N2 were 58.48 and 9.00, which exceeded the 2008 upper bound. Therefore, these TR copolymer membranes are expected to be one of the candidate materials for gas separation applications.

Graphical abstract: Enhanced gas separation and mechanical properties of fluorene-based thermal rearrangement copolymers

Article information

Article type
Paper
Submitted
23 Dec 2020
Accepted
30 Mar 2021
First published
07 Apr 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 13164-13174

Enhanced gas separation and mechanical properties of fluorene-based thermal rearrangement copolymers

J. Zhang, Y. Lu, G. Xiao, M. Hou, L. Li and T. Wang, RSC Adv., 2021, 11, 13164 DOI: 10.1039/D0RA10775A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements