Issue 19, 2021

Exploring the formation of carbonates on La2O3 catalysts with OCM activity

Abstract

La2O3 catalyzed oxidative coupling of methane (OCM) is one of the promising catalytic partial oxidation processes that converts methane directly into more valuable C2 products. Previous optimization studies found a nanorod shape La2O3 sample (n-La2O3) to exhibit the best low temperature OCM activity. Our previous results correlated the formation of bulk La2O2CO3 with a poisoning effect in OCM. In this study, coupled online MS and in situ XRD are applied to further elucidate this poisoning effect. In the same temperature range, the n-La2O3 sample is compared with a commercial isotropic La2O3 (M-La2O3) catalyst for their OCM performance and propensity to form La2O2CO3 under various CO2 concentrations. The n-La2O3 sample is found to be far more resistant against forming La2O2CO3 than the M-La2O3 sample. In situ XRD results show that after identical exposures to 10%, 30%, and 50% CO2 at around 550 °C, the phase transition to La2O2CO3 is complete for M-La2O3, while n-La2O3 is only partially converted. In addition, coupled online MS and in situ XRD results indicate that the n-La2O3 sample is able to maintain larger grain sizes of La2O3 than the M-La2O3 sample after the same adsorption amount of CO2. Arrhenius plots confirm that in the same temperature range the apparent activation energy for OCM is around 60 kJ mol−1 lower for n-La2O3 than for M-La2O3. These results strongly support that carbonate formation suppresses the OCM performance, which may serve as an indicator in developing more efficient La2O3 based catalysts.

Graphical abstract: Exploring the formation of carbonates on La2O3 catalysts with OCM activity

Supplementary files

Article information

Article type
Paper
Submitted
16 Jun 2021
Accepted
09 Aug 2021
First published
09 Aug 2021

Catal. Sci. Technol., 2021,11, 6516-6528

Exploring the formation of carbonates on La2O3 catalysts with OCM activity

C. Guan, Z. Liu, D. Wang, X. Zhou, Y. Pang, N. Yu, A. P. van Bavel, E. Vovk and Y. Yang, Catal. Sci. Technol., 2021, 11, 6516 DOI: 10.1039/D1CY01073E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements