Issue 6, 2021

Homogeneous nucleation in a Poiseuille flow

Abstract

Nucleation in a dynamical environment plays an important role in the synthesis and manufacturing of quantum dots and nanocrystals. In this work, we investigate the effects of fluid flow (low Reynolds number flow) on the homogeneous nucleation in a circular microchannel in the framework of the classical nucleation theory. The contributions of the configuration entropy from the momentum-phase space and the kinetic energy and strain energy of a microcluster are incorporated in the calculation of the change of the Gibbs free energy from a flow state without a microcluster to a flow state with a microcluster. An analytical equation is derived for the determination of the critical nucleus size. Using this analytical equation, an analytical solution of the critical nucleus size for the formation of a critical liquid nucleus is found. For the formation of a critical solid nucleus, the contributions from both the kinetic energy and the strain energy are generally negligible. We perform numerical analysis of the homogeneous nucleation of a sucrose microcluster in a representative volume element of an aqueous solution, which flows through a circular microchannel. The numerical results reveal the decrease of the critical nucleus size and the corresponding work of formation of a critical nucleus with the increase of the distance to axisymmetric axis for the same numbers of solvent atoms and solute atoms/particles.

Graphical abstract: Homogeneous nucleation in a Poiseuille flow

Article information

Article type
Paper
Submitted
25 Nov 2020
Accepted
27 Jan 2021
First published
27 Jan 2021

Phys. Chem. Chem. Phys., 2021,23, 3974-3982

Author version available

Homogeneous nucleation in a Poiseuille flow

F. Yang, Phys. Chem. Chem. Phys., 2021, 23, 3974 DOI: 10.1039/D0CP06132H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements