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Nucleation in a dynamical environment plays an important role in the synthesis and manufacturing 

of quantum dots and nanocrystals. In this work, we investigate the effects of fluid flow (low 

Reynolds number flow) on the homogeneous nucleation in a circular microchannel in the 

framework of the classical nucleation theory. The contributions of the configuration entropy from 

the momentum-phase space and the kinetic energy and strain energy of a microcluster are 

incorporated in the calculation of the change of the Gibbs free energy from a flow state without a 

microcluster to a flow state with a microcluster. An analytical equation is derived for the 

determination of the critical nucleus size. Using this analytical equation, an analytical solution of 

the critical nucleus size for the formation of a critical liquid nucleus is found. For the formation of 

a critical solid nucleus, the contributions from both the kinetic energy and the strain energy are 

generally negligible. We perform numerical analysis of the homogeneous nucleation of a sucrose 

microcluster in a representative volume element of an aqueous solution, which flows through a 

circular microchannel. The numerical results reveal the decrease of the critical nucleus size and 

the corresponding work of formation of a critical nucleus with the increase of the distance to 

axisymmetric axis for the same numbers of solvent atoms and solute atoms/particles. 

Keywords: Homogeneous nucleation; Poiseuille flow; Configuration entropy; Critical nucleus size; 

Work of formation of a critical nucleus.
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1. Introduction

The rapid growth in nanotechnology has stimulated great interest in synthesizing objects of 

nanosizes, including nanoparticles 1-3, quantum dots 4, 5, nanowires 6, 7, nanotubes etc. 8, 9, for the 

applications in nanoelectronics and nanophotonics. Currently, the fabrication of most quantum 

dots has been based on the bottom-up approach, which involves nucleation and growth in a 

dynamic environment, such as in a flow and/or agitation environment 10, 11. The dynamic 

environment has imposed a challenge to the understanding and analysis of the nucleation and 

growth behaviors due to the motion of clusters/nuclei/crystals and monomers.

There are reports 12-20 focusing on the analysis of the effect of shear flow and agitation on 

homogeneous nucleation. Lothe and Pound 12 suggested the need to include the contributions of 

translational and rotational degrees of freedom in the free energy of formation of clusters in the 

classical nucleation theory, while their approach led to significant discrepancy between their 

results and experimental results. Reiss et al. 13 pointed out that careful analysis is needed to avoid 

the overestimation of molecular configurations and large error in the nucleation rate. Mokshin et 

al. 14 performed molecular dynamics (MD) simulation for the nucleation of a single-component 

glass-forming system under shear and incorporated the effect of shear in the effective temperature. 

They commented that the classical nucleation theory is applicable to uniformly sheared systems. 

Including the kinetic energy for translational motion and/or rotational motion in the free energy of 

formation of a state, Reguera and Rubi 15, 16 derived the Fokker–Planck equation from mesoscopic 

nonequilibrium thermodynamics for the growth of clusters in a shear flow and revealed the 

dependence of the growth and nucleation rates on the flow, as expected. Assuming that both 

chemical potential difference and interfacial energy are dependent on shear rate, Blaak et al. 21 

performed Brownian dynamics simulation for the analysis of the effect of shear on homogeneous 

nucleation in colloidal suspensions and pointed out the increase of critical nucleus size with the 

shear rate. However, they did not provide physical basis for the dependence of the chemical 

potential difference and interfacial energy on the shear rate. Recently, Richard and Speck 22 

suggested the need to include the change of interfacial work due to shear-induced deformation in 

the classical nucleation theory in the analysis of the nucleation in a sheared fluid. They obtained a 

relation between the pressure difference across the interface between solid and liquid and the flow-

induced shear stress in the framework of linear elasticity without introducing surface stress. Their 
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approach is questionable, since this relation predicts that shear stress can lead to the change of the 

pressure difference across the interface.

Considering the importance of the synthesis of nano-objects and quantum dots in dynamic 

environments and the important role of nucleation in controlling the formation of nano-objects and 

quantum dots, we investigate the nucleation of solute atoms/particles in a fluid/solvent system 

under Poiseuille flow. The analysis takes into account the contributions of translational and 

rotational motion and the strain energy stored in clusters and derives an analytical solution of the 

critical nucleus size for homogeneous nucleation in a flow system.

2. Physical Model
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Figure 1. Schematic of a Poiseuille flow with solute atoms/particles dispersed in solvent: (a) 

without microclusters, (b) with a microcluster, and (c) flow-induced change in local states with 

and without a microcluster.

Consider a viscous liquid, which consists of solvent and solute atoms/particles. The viscous 

liquid flows isothermally in a circular channel at steady state, as shown in Fig. 1a, and the 

nucleation of the solute atoms/particles can occur during the flow (Fig. 1b). Assume that the 

Reynolds number for the viscous flow is small; there are no formations of vortexes during the 
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flow. For the steady-state flow, we can randomly choose a small volume in the channel as a 

representative volume element (RVE) (Fig. 1c), in which the numbers of solvent atoms and solute 

atoms are maintained constant. Note that the RVE size must be small enough macroscopically and 

large enough microscopically to represent average local behavior.

Let N1 and N2 represent the numbers of solvent atoms and solute atoms in the RVE, 

respectively. Note that the local concentration of solute atoms is dependent on spatial variable and 

local velocity 23. The difference of the internal energies of the materials in the RVE between 

stationary state and a flow state without the formation of microclusters can be calculated as

(2)
1 2

2 2
1 0 1 2 1 1 1 2 2 2

1 1

1 1 ( ) ( )
2 2

N N

i i f s f s
i i

U U mV m V N N
 

           

where U1 and U0 are the internal energies of the materials at the flow state and at the stationary 

state, respectively, m1 and m2 are the atomic masses of the solvent atoms and solute atoms, 

respectively, and V is the velocity of individual atoms, μf1 and μs1 are the chemical potentials of 

the solvent atoms at the flow state and the stationary state, respectively, and μf2 and μs2 are the 

chemical potentials of the solute atoms/particles at the flow state and the stationary state, 

respectively.

Assume that there are no internal degrees of freedom for all the solvent and solute atoms. 

Under the steady state flow, there are no spatiotemporal evolution of the system (the solvent and 

solute atoms) in the RVE except local fluctuation the same as the stationary system (Fig. 1c). The 

thermodynamic state of an atom is determined by its location in the REV and energy (kinetic 

energy). Thus, the entropy of the system consists of the entropy of mixing, Sm, the entropy 

associated with the energy of solvent atoms, SK1, and the entropy associated with the energy of 

solute atoms, SK2, as

 (3)1 2m K KS S S S  

Assume that the difference in the entropy of mixing between the stationary state and a flow state 

without the formation of clusters is negligible. The entropy of mixing, Sm, can be calculated as 24

(4)1 1 2 2ln[ (1 )] ln( )mS N k x N k x     

with k being the Boltzmann constant, T being absolute temperature, γ1 and γ2 being the activity 

coefficients for the solvent atoms and solute atoms, respectively, and x=N2/(N1+N2). To calculate 

the entropies associated with the energies of the solvent atoms and solute atoms, SK1 and SK2, we 

needs to introduce the phase space with coordinates corresponding to the three components of  
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momentum of atoms  25, 26. Following the approach given by Bhattacharyya and Dawlaty 26, the  

entropies associated with the energies of the solvent atoms and solute atoms, SK1 and SK2, can be 

calculated as 25

  (i = 1, 2) (5)ln( )Ki i i iS N k N I

where the effect of the RVE size is neglected. The parameters of Ii are

(i = 1, 2) (6)21
2i i iI m V  

in which <> represents average value for the solvent/solute atoms in the REV. It is evident that 

the motion of the solvent atoms and solute atoms in a flow system contributes to the change of the 

entropy. 

Using Eqs. (2)-(5), we obtain the difference of the Gibbs free energies of the materials in the 

RVE between the stationary state and a flow state without the formation of microclusters as

(7)1 1 0G U U T S P V      

1 2
2 2

1 2 1 1 1 2 2 2
1 1

1 1 ( ) ( )
2 2

N N

i i f s f s
i i

mV m V N N P V
 

            

  1 1 1 2 2 2ln( ) ln( )kT N N I N N I 

in which PV represents the work done to the system in the RVE. Note that Eq. (7) is only valid  

under the condition that the difference in the entropy of mixing between the stationary state and 

the flow state without the formation of clusters is negligible.

Now, consider the formation of a microcluster in the RVE, as shown in Fig. 1b and 1c. For 

simplification, we assume that the microcluster is a spherical particle of a in radius and consists of 

m solute atoms. There are (N2 - m) solute atoms and a microcluster in the RVE. The difference of 

the internal energies of the materials in the RVE between the stationary state and a flow state with 

a cluster is

(8)
1 2

2 2 2
2 0 1 2

1 1

1 1 4
2 2

N N m

i i KC SC
i i

U U mV m V E E a


 

       

 1 1 1 2 2 2 2( ) ( )( ) ( )f s f s m sN N m m            

where U2 is the internal energy of the materials in the RVE at the flow state with a microcluster, 

EKC and ESC are the kinetic energy and strain energy of the microcluster associated with the motion 

and deformation, σ is the specific interface energy between the microcluster and the liquid in the 
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RVE, and μm is the chemical potential per atom in the microcluster at the flow state. For a liquid 

microcluster, which is referred to as a microcluster that consists of solute atoms, exhibits non-

periodic structure and cannot maintain a stationary configuration under shear stress, ESC = 0. Note 

that Eq. (8) is based on the assumption that the presence of the microcluster has negligible effect 

on the flow state of the atoms in the RVE, and the interface energy is a function of local 

concentration of the solute atoms  24, 27, 28. The entropy of mixing is

(9)1 1 2 2ln[ (1 )] ( ) ln( )mS N k y N m k y      

and the entropy associated with the kinetic energy of the solvent and solute atoms, SK, is

(10) 1 1 1 2 2 2ln( ) ( ) ln[( ) ]KS k N N I N m N m I   

 with y = (N2 – m)/(N1 + N2 – m). 

It is known that the flow of a viscous fluid can cause translational and rotational motion of the 

particles suspended in the fluid 29. According to the results given by Jeong and  Jang 29, the 

translational speed of a microcluster is approximately the same as local fluid speed, VL, and the 

angular speed of a microcluster is approximately linearly proportional to local average fluid speed 

and the distance to axisymmetric axis for the Poiseuille flow in a circular channel and inversely 

proportional to the square of the radius of the circular channel, r0. Thus, the kinetic energy of the 

microcluster is

 (11)
2

2 2 22 2
2

02 5KC L
mm mm arE V V

r
 

    
 

in which V is the average speed of the Poiseuille flow,  is a proportionality constant between the 

angular speed and the local average speed, and r is the distance between the microcluster and the 

axisymmetric axis. 

According to Bretherton 30, the dependence of the shear stress applied onto the surface of a 

solid microcluster in a viscous flow is proportional to local fluid speed and inversely proportional 

to the size of the solid microcluster as

 (12)LV
a


 

The strain energy stored in a solid microcluster can be estimated as 22

 (13)
2 23 ( )4 2

3 2 3
L L

SC
V a VaE

G a G
       

 
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Here,  is the viscosity of the viscous fluid,  is a constant, depending on the distribution of the 

shear stress on the surface of the solid microcluster, and G is the modulus of the microcluster. 

Using the results of (8)-(11) and (13), we obtain the difference of the Gibbs free energies of 

the materials in the RVE between the stationary state and a flow state with a microcluster as

(14)
1 2

2
2 2 2 2 2 22 2

2 1 2 2 2
1 1 1 0

1 1 1
2 2 2 2 5

N N m

i i i L
i i i

mm mm arG mV m V m V V V P V
r  

 
         

 
  

2
2

2
( )2 ( ) 4

3
L

m S
a V m a

G
 

        1 1 2 2ln[ (1 )] ln( )kT N y N y    

  1 1 2 2 1 1 1 2 2 2ln[ (1 )] ln( ) ( ) ( )( )f s f skT N x N x N N m             

  1 1 1 2 2 2ln( ) ( ) ln[( ) ]kT N N I N m N m I   

For a small RVE in the Poiseuille flow, we can have Vi  VL = 2V[1-(r/r0)2]. Therefore, the change 

of the Gibbs free energy of the system in the RVE from the flow state without a microcluster to 

the flow state with a microcluster is

 (15)2 1G G G    

2
2 22

2
05

mm arV
r

 
   

 

22 2 2
2

22
0

8 1 ( ) 4
3 m f

a V r m a
G r

   
        

 

1 2 2 2 2
1ln ( ) ln( ) ln( )
1

ykT N N m y N x
x

        

 
2

22
2 2 2 2

2 0

ln ln[2( ) 1 ]N m rkT N m N m m V
N r

  
        

It is evident that there exist contributions from the rotational motion and deformation of the solid 

microcluster as well as the flow-induced change in the configuration entropy. The effect of the 

translational motion of the microcluster is negligible due to its small size. The change of the Gibbs 

free energy is a spatial function of the flow field. Note that the nonslip condition is used in the 

Poiseuille flow, and the condition of r = r0 is inapplicable to Eq. (15).

3. Critical nucleus number and formation of free energy

For a spherical microcluster of radius a, the relation between the number of solute atoms, m, 

in the microcluster and the radius a is
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 (16)
1/3

23
4
ma     

with 2 being atomic volume of the solute atoms. According to the theory of thermodynamics, the 

maximum change of the Gibbs free energy of a system (i.e. zero driving force associated with the 

interface energy and the change of volumetric Gibbs free energy) determines the state, at which a 

critical nucleus can be formed, leading to the formation and growth of a crystal. Under the 

condition of constant pressure and temperature, there is

(17)
1 2 1 2, , , , , ,

0
T P N N T P N N

G G
a m

 
 

 

Substituting Eq. (15) in Eq. (17) and using Eq. (16), we obtain the critical nucleus number, mc, as

(18)
2/3

1/3 2
1 2

33
8 4cm


          

with the , 1 and 2 as

 (19)2 2ln( )m f kT y      

 (20)
2 2 1/32/3 2/3 2 2 2

2 22 2
1 2 2

0 0

31
8 3 4
c cm m m Vr rV

r G r

                      

 (21)
2/3 2

22
2 2 2 2

0

33 1 ln[2( ) 1 ]
8 4 c

kT rN m m V
r

                   

Here,  represents the contribution of the change in the free energy due to the formation of the 

nucleus at a stationary environment, 1 represents the contribution of the kinetic energy and 

strain energy due to the flow-induced rotation and deformation of the nucleus, and 2 represents 

the contribution from local “ordered” structure due to the viscous flow. Note that 1 and 2 are 

functions of mc, implying that Eq. (18) is an implicit expression of the critical nucleus number.

According to Eqs. (18)-(21), it is evident that the critical nucleus size is dependent on the 

average velocity of the Poiseuille flow and the spatial position of the nucleus in the circular channel. 

It is interesting to note that the critical nucleus size is also dependent on the atomic mass of the 

solute atoms and the number of solute atoms in the RVE. 

For the stationary state, Eq. (15) yields

(22)
2/3

1/3 233
8 4cm


       
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which is the same as the result of the classical nucleation theory. Note that Eq. (22) is derived from 

Eq. (15) under the condition that the term from the configurational entropy is set to be zero. There 

exists a discontinuity of the change of the Gibbs free energy between the stationary state and the 

flow state.

4. Discussion 

Formation of a liquid microcluster

For the formation of a liquid microcluster in a flow system, there is ESC = 0. Let mG (= NaG/ 

N1) be the change of the Gibbs free energy per mole of the solvent for the system in the RVE from 

the flow state without a microcluster to the flow state with a microcluster. We have

(23)
22 2

52
2

1 2 0

4
15

a
m

N m V rG a
N r

  
     

3
2

0 2
1 2 1

4[ ln( )] 4
3

a a
m

N a NkT y a
N N


       


2

1

1ln ln
1

Ny yRT
x N x

 
   

23 3 3 2
2

2 2 2 2
1 2 2 2 2 0

4 4 4ln 1 ln 2 1
3 3 3

RT a a a rN N m V
N N r

                             

Equation (23) represents the change of the Gibbs free energy per mole of the solvent for the local 

nucleation of a liquid microcluster in a finite system in a Poiseuille flow. 

For N1 much larger than N2, Eq. (23) is reduced to as

(24)
22 2

52
2

1 2 0

4
15

a
m

N m V rG a
N r

  
     

3
2

1 2 1

4 4
3

a aN a Na
N N

 
  



It is evident that the only contribution to the change of the Gibbs free energy is the kinetic energy 

from the rotational motion of the microcluster. At r = 0, i.e. the axisymmetric axis of the flow 

channel, Eq. (24) gives

 (25)
3

2

1 2 1

4 4
3

a a
m

N a NG a
N N

 
   



which is the same as the result of the classical nucleation theory. Such a result is in accord with 

that the spherical microcluster at the axisymmetric axis of the flow channel does not experience 

rotational motion. 

Using Eq. (24) and taking the derivative with respect to a, we obtain the following equation
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(26)
22 2

32
2

2 0 2

2 0
3

m V r a a
r

  
      

in which the first and second terms represent the contributions of the kinetic energy due to the 

rotation of the microcluster and the change of chemical energy due to the phase change, 

respectively. The solutions of Eq. (26) for r  0 are 

 k = 0, 1, 2 (27)1 3 3 22 cos arccos
3 3 2 3k
p q ka

p p
   

         

with

 and  (28) 
2

2 2 2
2 0

3 rp
m V r


 

    

2

2
2 2 2

2 0

6 rq
m V r


 

    

The critical nucleus size, ac, is the smallest, positive root of Eq. (27). For r = 0, the critical nucleus 

size, ac, for the nucleation of a critical nucleus at the axisymmetric axis is

(29)22
ca 

 


Formation of a solid microcluster

To analyze the formation of a solid microcluster, we focus on the homogeneous nucleation of 

a sucrose microcluster in an aqueous solution, which flows through a circular channel. Define  

as the ratio of the contribution of the kinetic energy from the rotation of the microcluster to the 

homogeneous nucleation of a sucrose crystal to the contribution of the change of chemical energy 

from the phase change to the homogeneous nucleation of a sucrose crystal in a viscous flow 

through a circular microchannel. From Eqs. (19) and (20), we have

 (30)
22 2

22
2

03
m V r a

r
 

     

Here,  is ~1.5, as estimated from the results given by Jeong and Jang 29.

The solubility of sucrose in water at 25 C is 207 g in 100 g of water (67.47 g in 100 g solution) 
31, and the molecular weight of sucrose is 342.3 g/mol 31. Using the result given by Saska and 

Myerson 32, the specific interface energy between a sucrose microcluster and a sucrose-saturated 

aqueous solution is approximated to be 782.97 mJ/m2. The enthalpy of solution for the dissolution 

of sucrose in water is 16.7 kJ/mol 33, which gives  kJ/mol. Using the molecular weight 16.7  

(342.3 g/mol) and density (1.587 g/cm3) of sucrose 31, the molar volume of sucrose is found as 
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215.69 cm3/mol. Assume that the radius of the circular microchannel is 0.8 mm 5, and the average 

velocity of the flow in the circular microchannel is 2.76 mm/s 5. 

Figure 2 shows the variation of the ratio, , at r = r0 with the size of a sucrose microcluster in 

the microchannel. It is evident that increasing the microcluster size increases the ratio, suggesting 

the increase of the contribution of the kinetic energy due to the rotation of the microcluster to the 

critical nucleus size of the glucose microcluster. However, the magnitude of the ratio, , is less 

than 210-16 for the microcluster size being up to 1 μm, indicating that the effect of the kinetic 

energy due to the rotation of the microcluster on the critical nucleus size is negligible. Since the 

ratio, , is independent of the size of the system, as can be found from Eq. (30), the contribution 

of the kinetic energy due to the rotation of the microcluster to the nucleation of a sucrose 

microcluster in a finite system is negligible.

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

-
 (1

0-1
6 )

a (m)

Figure 2. Variation of the ratio, , at r = r0 with the size of a glucose microcluster in a microchannel 

under a Poiseuille-flow.

The elastic modulus of crystalline sucrose is 32.3 GPa 34. Assuming that the Poisson ratio of 

crystalline sucrose is 0.3, we obtain G=12.42 GPa. The viscosity of a saturated, aqueous sucrose 

solution is 76.9 MPas 31. Using Eqs. (19) and (20), we can calculate the ratio of the contribution 

of the flow-induced strain energy in the microcluster to the homogeneous nucleation of a sucrose 

crystal to the contribution of the change of chemical energy from the phase change to the 

homogeneous nucleation of a sucrose crystal in a viscous flow through a circular microchannel. 

Using the above data, the ratio is found to be -3.1210-26. Such a small ratio suggests that the 

contribution of the flow-induced strain energy in the microcluster to the change of the Gibbs free 
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energy is negligible in comparison to the contribution from the change of chemical energy due to 

the phase change.

From the above analysis, we can conclude that the contributions of the kinetic energy and the 

flow-induced strain energy are negligible in the analysis of the homogeneous nucleation of sucrose 

crystals in the Poiseuille flow in a circular microchannel. It needs to be pointed out that such a 

conclusion is applicable to the homogeneous nucleation of most crystalline materials in 

microchannels, since they possess large moduli and the viscosities of the corresponding aqueous 

solutions are generally less than the viscosity of a saturated, aqueous sucrose solution. Thus, the 

change of the Gibbs free energy per mole of the solvent for the system in the RVE from the flow 

state without a microcluster to the flow state with a microcluster can be approximately expressed 

as

(31)
3

2 2
0 2

1 2 1 1

4 1[ ln( )] 4 ln ln
3 1

a a
m m

N a N Ny yG kT y a RT
N N x N x

  
             

23 3 3 2
2

2 2 2 2
1 2 2 2 2 0

4 4 4ln 1 ln 2 1
3 3 3

RT a a a rN N m V
N N r

                             

Note that the ratio of N2/N1 is associated with the concentration of the solute atoms (= N2/(N1 + 

N2)). To have nucleation and growth of a new phase, a supersaturated solution is needed, i.e. N2/N1 

being larger than the critical ratio of (N2/N1)c corresponding to the solubility of the new phase in 

the solvent at given conditions (temperature and pressure).

5. Numerical illustration

Consider the homogeneous nucleation of a sucrose microcluster in an aqueous solution, which 

flows through a circular microchannel of 0.8 mm in radius. Assume that the size of an RVE for 

the formation of a sucrose microcluster in the microchannel is 111 μm3 and the degree of local 

supersaturation is 2 times of the solubility of sucrose in water at 25 C (207 g in 100 g of water). 

We have (N1, N2) = (14.519, 3.158)109. Figure 3 presents the variation of the change of the Gibbs 

free energy per mole of the solvent for local nucleation of a sucrose microcluster with the 

microcluster size for the same values of N1 and N2 and the average flow speed of 2.76 mm/s. 

Similar to the classic nucleation theory, increasing the microcluster size causes the change of the 

Gibbs free energy to increase first, reach maximum, and then decrease for large microcluster size. 

The microcluster size corresponding to the largest change of the Gibbs free energy, which is 
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referred to as the work of formation of a critical nucleus (Gmax), is the critical nucleus size. There 

exists spatial dependence of the change of the Gibbs free energy, which is associated with the 

spatial distribution of the flow field. The larger the distance to the axisymmetric axis, the smaller 

is the work of formation of a critical nucleus. 
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Figure 3. Dependence of the change of the Gibbs free energy on the microcluster size at different 

spatial positions in the radial direction for the same values of N1 and N2 (r0: 0.8 mm, V: 2.76 mm/s).
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Figure 4. Dependence of the critical nucleus size and the corresponding work of formation of a 

critical nucleus on the spatial position in the radial direction for the Poiseuille flow in a circular 

microchannel for the same values of N1 and N2 (r0: 0.8 mm, V: 2.76 mm/s) 

Using the results in Fig. 3, we can calculate the work of formation of a critical nucleus and the 

corresponding critical nucleus size for the homogeneous nucleation of a sucrose nucleus at 
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different spatial positions in the radial direction. Figure 4 shows the dependence of the work of 

formation of a critical nucleus and the corresponding critical nucleus size on the spatial position 

in the radial direction for the same values of N1 and N2. Both the critical nucleus size and the 

corresponding work of formation of a critical nucleus decrease with the increase of the distance to 

the axisymmetric axis, revealing the dependence of the critical nucleus size on local flow field. 

The smaller the distance to the axisymmetric axis, the larger is the critical nucleus size. The relative 

difference of the critical nucleus size is 12.1%. 

Mokshin et al. 14 revealed the increase of the effective temperature with the increase of shear 

rate in the MD simulation of the nucleation of a single-component glass-forming system under a 

uniform shear rate. It is known that the nucleation behavior can be expressed by the Arrhenius 

relation with the energy barrier being the work of formation of a critical nucleus. The increase of 

the effective temperature with the increase of shear rate from the work given by Mokshin et al. 14 

suggests that increasing shear rate reduces the work of formation of a critical nucleus. Liu and 

Rasmuson 20 observed the decrease of the induction time for the nucleation of butyle paraben in 

ethanol with the increase of shear rate in a Taylor-Couette flow system. They assumed that the 

induction time is inversely proportional to the nucleation rate and observed the linear correlation 

between the logarithm of the induction time and the temperature term. Such a correlation reveals 

that increasing shear rate resulted in the decrease of the energy barrier for the nucleation of butyle 

paraben. 

For the Poiseuille flow of VL = 2V[1-(r/r0)2] in a circular microchannel, local shear rate is   

 and increases with the increase of the distance to the axisymmetric axis. The results shown 2
04 /Vr r

in Fig. 4 indicates that increasing the  shear rate leads to the decrease of the work of formation of 

a critical nucleus. Such a trend is in consistence with that reported by Mokshin et al. 14 and Liu 

and Rasmuson 20. It needs to be pointed out that there exists spatial distribution of the solute 

concentration, as revealed by Taylor 23, in the radial direction of the circular microchannel. Such 

a spatial distribution of the solute concentration reduces the extent of oversaturation, likely leading 

to the changes in local critical nucleus size and the corresponding work of formation of a critical 

nucleus due to the dependence of the change of the Gibbs free energy on local concentration of 

solute atoms/particles. 

From Figs. 3 and 4, we note that the critical nucleus size decreases with the increase of the 

distance to the axisymmetric axis, i.e. the critical nucleus size decreases with the increase of the 
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shear rate. This trend is in contrast to the result obtained by Blaak et al. 21 that the critical size 

increases with increasing the shear rate. Such different behavior is likely due to that  Blaak et al. 
21 assumed linear dependences of the chemical potential difference and interfacial energy on the 

square of shear rate in their analysis, leading to the increase of the change of the Gibbs free energy 

with the increase of shear rate, as shown in Fig. 2 in their work. However, Blaak et al. 21 stated 

“this observation should not be considered as evidence that the shear rate can really be considered 

as a thermodynamic variable”. Thus, it remains elusive whether one can include the contribution 

of shear rate to the interfacial energy.

-4

-3

-2

-1

0

1

2

3

4

0 1 2 3 4 5 6 7 8

2
6
12
18
30


m

G
(m

J/
m

ol
)

a (nm)

V (mm/s):

r =0 

Figure 5. Variation of the change of the Gibbs free energy with the microcluster size at 

axisymmetric axis for the same values of N1 and N2 under different average flow speeds (r0: 0.8 

mm).

Figure 5 depicts the variation of the change of the Gibbs free energy with the microcluster size 

at axisymmetric axis for the same values of N1 and N2 under different average flow speeds. It is 

evident that there exists the dependence of the change of the Gibbs free energy on the average flow 

speed of the Poiseuille flow in a circular microchannel. The variation of  the change of the Gibbs 

free energy with the microcluster size is similar to the classical nucleation theory, independent of 

the magnitude of average flow speed. 

Using the results in Fig. 5, we calculate the work of formation of a critical nucleus and the 

corresponding critical nucleus size for the homogeneous nucleation of a sucrose nucleus at the 

axisymmetric axis for different average flow speeds. Figure 6 presents the dependence of the work 

of formation of a critical nucleus and the corresponding critical nucleus size on the average flow 
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speed at the axisymmetric axis for the same values of N1 and N2. Both the critical nucleus size and 

the corresponding work of formation of a critical nucleus increase with the increase of the average 

flow speed, revealing the effect of the flow speed of the critical nucleus size and the corresponding 

work of formation of a critical nucleus. The larger the flow speed, the larger are the critical nucleus 

size and the corresponding work of formation of a critical nucleus. It needs to be pointed out that 

there is no effect of the shear rate, since the shear rate is zero at the axisymmetric axis.
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Figure 6. Variation of the critical nucleus size and the corresponding work of formation of a critical 

nucleus with average flow speed at axisymmetric axis for the same values of N1 and N2 (r0: 0.8 

mm).

6. Discussion

The above analysis has been focused on a single microcluster in spherical shape. In general, 

multi-microclusters of nonspherical shapes, such as cube and cylinder, can be present. The above 

analysis can be extended to study the nucleation of new phases of nonspherical shapes and poly-

nucleation.

For isotropic interfacial energy, both the surface area and volume of a nonspherical 

microcluster need to be calculated; for anisotropic interfacial energy, integration over the surface 

of the nonspherical microcluster is needed in the calculation of the interfacial energy. The numbers 

of the solute atoms on the surface of the microcluster and those enclosed by the microcluster can 

be calculated from the surface area and volume of the nonspherical microcluster.  Following the 

same approach, we can find the change of the Gibbs free energy in a flow field and determine the 

critical number of solute atoms for the nucleation of a critical nucleus of nonspherical shape. 
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There are two approaches to analyze polynuclear scenario. One is based on simultaneous 

nucleation, and the other is based on the kinetic approach developed by Zeldovich 35. For the 

simultaneous nucleation, there is only a limited number of solvent and solute atoms confined in a 

finite space (domain) for the formation of a nucleus. Introducing the domain size and fixed 

numbers of the solvent and solute atoms in the corresponding domain and following similar 

approach presented in previous section, the effect of the domain size on the change of the Gibbs 

free energy can be formulated and the dependence of the critical nucleus size on the domain size 

can be determined. We can also use the kinetic approach developed by Zeldovich 35 to determine 

if “simultaneous” nucleation can occur. In this approach, the nucleation barrier (the work of 

formation of a critical nucleus) as derived in the above analysis can be used in the calculation of 

the nucleation rate and in the determination of the critical nucleation rate. Using the critical 

nucleation rate and the critical nucleus size, we can determine the time interval for the occurring 

of two consecutive nucleation events and the presence of mono-nucleation or poly-nucleation.

7. Conclusion 

The success in the synthesis of objects of nanosizes in dynamic environments has stimulated 

great interest in understanding the effects of fluid flow on the nucleation processes under fluid 

flow and agitation. Using the result given by Barsky 25, we have determined the configuration 

entropy associated with the kinetic energies of the solvent and solute atoms and incorporated the 

configuration entropy as well as the kinetic energy and strain energy of a microcluster in the 

calculation of the change of the Gibbs free energy of a REV between a flow state without the 

microcluster and the corresponding flow state with the microcluster for the Poiseuille flow in a 

circular microchannel. The change of the Gibbs free energy is a function of the average flow speed 

and the spatial position in the radial direction.

Following the approach used in the classic nucleation theory, we have derived the analytical 

expression for the determination of the critical nucleus size. For the formation of a critical liquid 

nucleus, the liquid nucleus cannot sustain shear deformation, and the contribution from the strain 

energy to the change of the Gibbs free energy is null. We have obtained analytical solution of the 

critical nucleus size. For the formation of a critical solid nucleus, the contributions from both the 

kinetic energy and the strain energy are generally negligible in comparison to the chemical energy 

associated with the phase change from individual monomers/particles in a solution to a solid 

nucleus. The configuration entropy associated the kinetic energies of the solvent and solute atoms 
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determines the difference of the change of the Gibbs free energy between a stationary state and a 

flow state for the formation of a solid nucleus. 

The numerical results for the homogeneous nucleation of a sucrose microcluster in a REV of 

an aqueous solution, which flows through a circular microchannel, shows that both the critical 

nucleus size and the corresponding work of formation of a critical nucleus decrease with the 

increase of the distance to the axisymmetric axis for the same values of N1 and N2. Increasing 

average flow speed leads to the increases in the critical nucleus size and the corresponding work 

of formation of a critical nucleus at the same spatial position under the same values of N1 and N2.
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