Issue 5, 2020

MOF thin films with bi-aromatic linkers grown by molecular layer deposition

Abstract

Thin films of metal–organic frameworks (MOFs) are promising for a wide range of applications including membranes for separations and sensor materials in microelectronics. Growth of such thin films using atomic/molecular layer deposition (ALD/MLD) has recently been demonstrated; however, the range of examples is still narrow. Here, we expand the repertory of gas-phase MOF thin film synthesis by ALD/MLD to include 2,6-naphthalenedicarboxylate (2,6-NDC) and biphenyl-4,4′-dicarboxylate (BP-4,4′-DC) as organic linkers. The films, which were deposited using ZrCl4 and either H2–2,6-NDC or H2–BP-4,4′-DC, were amorphous and formed crystalline MOF-structures when treated with acetic acid vapour at 160 °C. The film growth was investigated using in situ quartz crystal microbalance (QCM) measurements, and was in addition characterized using spectroscopic ellipsometry (SE), photoluminescence (PL), scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity (XRR). We further performed introductory investigations into a selection of possible future applications of these films, due to their porosity, luminescent and antibacterial properties. Expanding the repertory of MOF synthesis by ALD/MLD to include longer linkers such as 2,6-NDC and BP-4,4′-DC enables synthesis of thin films with a larger range of pore sizes.

Graphical abstract: MOF thin films with bi-aromatic linkers grown by molecular layer deposition

Article information

Article type
Paper
Submitted
23 Aug 2019
Accepted
27 Nov 2019
First published
13 Jan 2020
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2020,8, 2539-2548

MOF thin films with bi-aromatic linkers grown by molecular layer deposition

K. B. Lausund, M. S. Olsen, P. Hansen, H. Valen and O. Nilsen, J. Mater. Chem. A, 2020, 8, 2539 DOI: 10.1039/C9TA09303F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements