Synthesis of star-shaped polyzwitterions with adjustable UCST and fast responsiveness by a facile RAFT polymerization†
Abstract
Dual thermo- and pH-responsive star polymers with tunable upper critical solution temperatures (UCST) were synthesized by an “arm-first” RAFT polymerization approach. Crosslinking took place in a single step involving polymerization of 3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate (DMAPS) mediated by a macroRAFT agent containing carboxylic end-group and in the presence of crosslinker N,N-methylenebis(acrylamide) (MBA). Varied-temperature turbidity analysis, dynamic light scattering (DLS) and rheology analysis revealed that the star-shaped PDMAPS had a smaller hydrodynamic volume while retaining fast response properties, compared with linearly-shaped PDMAPS. Meanwhile, zeta-potential was used to determine that the range of UCST regulated by pH was greatly expanded and proportional to the number of end-groups that could be generally manipulated through RAFT polymerization. By changing the pH values from 3 to 10, the adjustable UCST range of the star polymer solution can reach over 36 °C. These results demonstrate that the topological structure and end-group effect are able to manipulate the phase transition behavior of polyzwitterions. These materials offer great potential as additives or drug delivery vehicles in biomedical applications.

Please wait while we load your content...