Issue 30, 2019

Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction

Abstract

The development of noble metal-free catalysts, which can replace noble metal ones, such as Pt, for various electrocatalytic processes in renewable energy devices is currently of huge interest. The β-phase of molybdenum carbide (i.e., β-Mo2C) has been reported to be one of the most active noble metal-free electrocatalysts for the hydrogen evolution reaction (HER) in electrolyzers, whereas the other phases, MoC and MoC1−x, have been widely regarded as weak electrocatalysts for HER. Herein, we report the synthesis of nanoporous substoichiometric α-MoC1−x and η-MoC nanosheets, named np-MoC NSs, that show comparable electrocatalytic activity toward HER as β-Mo2C does. The materials are synthesized using two-dimensional (2D) conjugated carbonitride and ammonium molybdate as precursors. Their structures contain N dopant atoms and nanopores. The pores create highly accessible catalytic sites and good mass and charge transport, and thereby excellent reaction kinetics for HER, in the materials. Theoretical calculations show that the N dopant atoms modulate the electronic properties of the catalytically active sites in the materials, leading to lower free energy of adsorption and desorption for the hydrogen species involved in the reaction and better catalytic activity for HER. This work demonstrates that, by simple structural design and electronic modulation, various phases of molybdenum carbides and related materials that have been traditionally considered inactive catalysts for HER can be made robust electrocatalysts for the reaction.

Graphical abstract: Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction

Supplementary files

Article information

Article type
Paper
Submitted
26 Apr 2019
Accepted
09 Jul 2019
First published
09 Jul 2019

J. Mater. Chem. A, 2019,7, 18030-18038

Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction

C. Tang, H. Zhang, K. Xu, Q. Zhang, J. Liu, C. He, L. Fan and T. Asefa, J. Mater. Chem. A, 2019, 7, 18030 DOI: 10.1039/C9TA04374H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements