Issue 8, 2019

Massively enhanced ionic transport in irradiated crystalline pyrochlore

Abstract

Crystalline disorder in complex oxides can have a pronounced effect on mass transport, but the role of disorder within the complex landscape of material and microstructural defects is not uniquely understood. In this work, we use radiation damage, not to study the fundamental damage response, but rather as a tool to induce and control the extent of disorder of a single oxide composition in order to explore the relationship between intrinsic disorder and transport. Thin films of the ordered pyrochlore Gd2Ti2O7 (GTO) were irradiated with light ions and transitioned from ordered pyrochlore to disordered crystalline defect fluorite to an amorphous structure, disordering monotonically with increasing fluence, but nonhomogeneously throughout the film. Conductivity increased substantially with increasing disorder, where only slight disordering results in the majority of the change in conductivity. Additionally, while the pristine GTO films exhibited mixed ionic and p-type electronic conductivity, the total conductivity of the material that exhibited maximum disorder prior to the onset of amorphization was ionic in nature.

Graphical abstract: Massively enhanced ionic transport in irradiated crystalline pyrochlore

Supplementary files

Article information

Article type
Paper
Submitted
15 Nov 2018
Accepted
22 Jan 2019
First published
04 Feb 2019
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2019,7, 3917-3923

Massively enhanced ionic transport in irradiated crystalline pyrochlore

C. R. Kreller, J. A. Valdez, T. G. Holesinger, J. Morgan, Y. Wang, M. Tang, F. H. Garzon, R. Mukundan, E. L. Brosha and B. P. Uberuaga, J. Mater. Chem. A, 2019, 7, 3917 DOI: 10.1039/C8TA10967B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements