(Co, Mn)-Doped NiSe2-diethylenetriamine (dien) nanosheets and (Co, Mn, Sn)-doped NiSe2 nanowires for high performance supercapacitors: compositional/morphological evolution and (Co, Mn)-induced electron transfer†
Abstract
A series of MSe2-dien (M = metal(II) ion and dien = diethylenetriamine) were grown on Ni foam (NF) based on Co(II)/Mn(II) salts with different molar ratios. It was found that the Co-free sample exhibited hollow tubes built by numerous interconnected nanowires, whereas nanosheets were observed in the Co-involved samples. The formation of nanosheets is associated with Co(II), which is due to the fact that Co(II) promotes the metal selenide nanosheet to grow along its (01
) facet (thickness direction). Furthermore, the formation and compositional/morphological evolution of the samples were investigated. Among them, (Co, Mn)-NiSe2-dien/NF (2 : 1-Co/Mn sample) showed the largest specific capacity of 288.6 mA h g−1 at 1 A g−1 with a retention of 69% at 10 A g−1 (198.6 mA h g−1), which is associated with its ultrathin nanosheet arrays and the co-doping of (Co, Mn) into NiSe2-dien, leading to the redistribution of electron densities around the Ni and Se centers. XPS and density functional theory (DFT) calculations proved the electron transfer from NiSe2-dien to the adsorbed OH− ions from the electrolyte solution, which can facilitate the redox reaction between active sites and electrolyte ions to enhance the electrochemical performance. A hybrid supercapacitor, (Co, Mn)-NiSe2-dien/NF//activated carbon, was fabricated, which displayed an energy density of 50.9 W h kg−1 at a power density of 447.3 W kg−1 and good cycling stability with 84% capacity retention after 10 000 charge–discharge cycles. Furthermore, (Co, Mn)-doped NiSe2-dien nanosheets could be transformed into (Co, Mn, Sn)-doped NiSe2 nanowire arrays after immersion in SnCl2 alcoholic solution due to cation exchange and the Kirkendall effect, and the obtained sample exhibited a decent areal capacity of 0.267 mA h cm−2 at 5 mA cm−2.

Please wait while we load your content...